It is shown that the axial and polar perturbations of the spherically
symmetric black hole can be described in a gauge-invariant way. The reduced
phase space describing gravitational waves outside of the horizon is described
by the gauge-invariant quantities. Both degrees of freedom fulfill generalized
scalar wave equation. For the axial degree of freedom the radial part of the
equation corresponds to the Regge-Wheeler result (Phys. Rev. 108, 1063-1069
(1957)) and for the polar one we get Zerilli result (Phys. Rev. D2, 2141-2160
(1970)), see also Chandrasekhar (The Mathematical Theory of Black
Holes,(Clarendon Press Oxford, 1983)), Moncrief (Annals of Physics 88, 323-342
(1974)) for both. An important ingredient of the analysis is the concept of
quasilocality which does duty for the separation of the angular variables in
the usual approach. Moreover, there is no need to represent perturbations by
normal modes (with time dependence exp(−ikt)), we have fields in spacetime
and the Cauchy problem for them is well defined outside of the horizon. The
reduced symplectic structure explains the origin of the axial and polar
invariants. It allows to introduce an energy and angular momentum for the
gravitational waves which is invariant with respect to the gauge
transformations. Both generators represent quadratic approximation of the ADM
nonlinear formulae in terms of the perturbations of the Schwarzschild metric.
We also discuss the boundary-initial value problem for the linearized Einstein
equations on a Schwarzschild background outside of the horizon.Comment: 23 page