3,765 research outputs found

    Ionization Mechanisms in Jet-Dominated Seyferts: A Detailed Case Study

    Full text link
    For the past 10 years there has been an active debate over whether fast shocks play an important role in ionizing emission line regions in Seyfert galaxies. To investigate this claim, we have studied the Seyfert 2 galaxy Mkn 78, using HST UV/optical images and spectroscopy. Since Mkn 78 provides the archetypal jet-driven bipolar velocity field, if shocks are important anywhere they should be important in this object. Having mapped the emission line fluxes and velocity field, we first compare the ionization conditions to standard photoionization and shock models. We find coherent variations of ionization consistent with photoionization model sequences which combine optically thick and thin gas, but are inconsistent with either autoionizing shock models or photoionization models of just optically thick gas. Furthermore, we find absolutely no link between the ionization of the gas and its kinematic state, while we do find a simple decline of ionization degree with radius. We feel this object provides the strongest case to date against the importance of shock related ionization in Seyferts.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 222 "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", T. Storchi Bergmann, L.C. Ho & H.R. Schmitt, ed

    The Nuclear Outflow in NGC 2110

    Full text link
    We present a HST/STIS spectroscopic and optical/radio imaging study of the Seyfert NGC 2110 aiming to measure the dynamics and understand the nature of the nuclear outflow in the galaxy. Previous HST studies have revealed the presence of a linear structure in the Narrow-Line Region (NLR) aligned with the radio jet. We show that this structure is strongly accelerated, probably by the jet, but is unlikely to be entrained in the jet flow. The ionisation properties of this structure are consistent with photoionisation of dusty, dense gas by the active nucleus. We present a plausible geometrical model for the NLR, bringing together various components of the nuclear environment of the galaxy. We highlight the importance of the circum-nuclear disc in determining the appearance of the emission line gas and the morphology of the jet. From the dynamics of the emission line gas, we place constraints on the accelerating mechanism of the outflow and discuss the relative importance of radio source synchrotron pressure, radio jet ram pressure and nuclear radiation pressure in accelerating the gas. While all three mechanisms can account for the energetics of the emission line gas, gravitational arguments support radio jet ram pressure as the most likely source of the outflow.Comment: 15 pages, 7 figures; accepted to MNRA

    Cosmic downsizing of powerful radio galaxies to low radio luminosities

    Get PDF
    At bright radio powers (P1.4GHz>1025P_{\rm 1.4 GHz} > 10^{25} W/Hz) the space density of the most powerful sources peaks at higher redshift than that of their weaker counterparts. This paper establishes whether this luminosity-dependent evolution persists for sources an order of magnitude fainter than those previously studied, by measuring the steep--spectrum radio luminosity function (RLF) across the range 1024<P1.4GHz<102810^{24} < P_{\rm 1.4 GHz} < 10^{28} W/Hz, out to high redshift. A grid-based modelling method is used, in which no assumptions are made about the RLF shape and high-redshift behaviour. The inputs to the model are the same as in Rigby et al. (2011): redshift distributions from radio source samples, together with source counts and determinations of the local luminosity function. However, to improve coverage of the radio power vs. redshift plane at the lowest radio powers, a new faint radio sample is introduced. This covers 0.8 sq. deg., in the Subaru/XMM-Newton Deep Field, to a 1.4 GHz flux density limit of S1.4GHz≥100 μS_{\rm 1.4 GHz} \geq 100~\muJy, with 99% redshift completeness. The modelling results show that the previously seen high-redshift declines in space density persist to P1.4GHz<1025P_{\rm 1.4 GHz} < 10^{25} W/Hz. At P1.4GHz>1026P_{\rm 1.4 GHz} > 10^{26} W/Hz the redshift of the peak space density increases with luminosity, whilst at lower radio luminosities the position of the peak remains constant within the uncertainties. This `cosmic downsizing' behaviour is found to be similar to that seen at optical wavelengths for quasars, and is interpreted as representing the transition from radiatively efficient to inefficient accretion modes in the steep-spectrum population. This conclusion is supported by constructing simple models for the space density evolution of these two different radio galaxy classes; these are able to successfully reproduce the observed variation in peak redshift.Comment: 7 pages, 6 figures; accepted for publication in Astronomy & Astrophysic

    Double-Peaked Narrow-Line Active Galactic Nuclei. II. The Case Of Equal Peaks

    Get PDF
    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the "equal-peaked" objects (EPAGNs) have [Ne V]/[O III] ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H beta ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.University Cooperative Society of the University of Texas at AustinJane and Roland Blumberg Cenntenial Professorship in AstronomyAlfred P. Sloan FoundationNational Aeronautics and Space AdministrationNational Science FoundationU.S. Department of EnergyJapanese MonbukagakushoMax Planck SocietyUniversity of ChicagoInstitute for Advanced StudyJapan Participation GroupJohns Hopkins UniversityKorean Scientist GroupLos Alamos National LaboratoryMax-Planck-Institute for Astronomy (MPIA)Max-Planck-Institute for Astrophysics (MPA)New Mexico State UniversityUniversity of PittsburghUniversity of PortsmouthPrinceton UniversityUnited States Naval ObservatoryUniversity of WashingtonFermilabAstronom
    • …
    corecore