50,000 research outputs found

    An Expansion Term In Hamilton's Equations

    Get PDF
    For any given spacetime the choice of time coordinate is undetermined. A particular choice is the absolute time associated with a preferred vector field. Using the absolute time Hamilton's equations are −(δHc)/(δq)=π˙+Θπ,- (\delta H_{c})/(\delta q)=\dot{\pi}+\Theta\pi, + (\delta H_{c})/(\delta \pi)=\dot{q},where, where \Theta = V^{a}_{.;a}istheexpansionofthevectorfield.Thusthereisahithertounnoticedtermintheexpansionofthepreferredvectorfield.Hamilton′sequationscanbeusedtodescribefluidmotion.Inthiscasetheabsolutetimeisthetimeassociatedwiththefluid′sco−movingvector.Asmeasuredbythisabsolutetimetheexpansiontermispresent.Similarlyincosmology,eachobserverhasaco−movingvectorandHamilton′sequationsagainhaveanexpansionterm.ItisnecessarytoincludetheexpansiontermtoquantizesystemssuchastheabovebythecanonicalmethodofreplacingDiracbracketsbycommutators.Hamilton′sequationsinthisformdonothaveacorrespondingsympleticform.Replacingtheexpansionbyaparticlenumber is the expansion of the vector field. Thus there is a hitherto unnoticed term in the expansion of the preferred vector field. Hamilton's equations can be used to describe fluid motion. In this case the absolute time is the time associated with the fluid's co-moving vector. As measured by this absolute time the expansion term is present. Similarly in cosmology, each observer has a co-moving vector and Hamilton's equations again have an expansion term. It is necessary to include the expansion term to quantize systems such as the above by the canonical method of replacing Dirac brackets by commutators. Hamilton's equations in this form do not have a corresponding sympletic form. Replacing the expansion by a particle number N\equiv exp(-\int\Theta d \ta)andintroducingtheparticlenumbersconjugatemomentum and introducing the particle numbers conjugate momentum \pi^{N}thestandardsympleticformcanberecoveredwithtwoextrafieldsNand the standard sympletic form can be recovered with two extra fields N and \pi^N$. Briefly the possibility of a non-standard sympletic form and the further possibility of there being a non-zero Finsler curvature corresponding to this are looked at.Comment: 10 page

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    The String Deviation Equation

    Full text link
    The relative motion of many particles can be described by the geodesic deviation equation. This can be derived from the second covariant variation of the point particle's action. It is shown that the second covariant variation of the string action leads to a string deviation equation.Comment: 18 pages, some small changes, no tables or diagrams, LaTex2

    Angular dependence of domain wall resistivity in artificial magnetic domain structures

    Get PDF
    We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behaviour of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, rho-down/rho-up~5.5, in good agreement with thin film band structure calculations.Comment: 14 pages, 3 figure

    Fixed-head star tracker magnitude calibration on the solar maximum mission

    Get PDF
    The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission (SMM) is defined as the accuracy of the electronic response to the magnitude of a star in the sensor field-of-view, which is measured as intensity in volts. To identify stars during attitude determination and control processes, a transformation equation is required to convert from star intensity in volts to units of magnitude and vice versa. To maintain high accuracy standards, this transformation is calibrated frequently. A sensitivity index is defined as the observed intensity in volts divided by the predicted intensity in volts; thus, the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity index, analysis is presented that compares the strengths and weaknesses of two possible transformation equations. The effect on the transformation equations of variables, such as position in the sensor field-of-view, star color, and star magnitude, is investigated. In addition, results are given that evaluate the aging process of each sensor. The results in this work can be used by future missions as an aid to employing data from star cameras as effectively as possible

    Magnetohydrodynamic activity inside a sphere

    Full text link
    We present a computational method to solve the magnetohydrodynamic equations in spherical geometry. The technique is fully nonlinear and wholly spectral, and uses an expansion basis that is adapted to the geometry: Chandrasekhar-Kendall vector eigenfunctions of the curl. The resulting lower spatial resolution is somewhat offset by being able to build all the boundary conditions into each of the orthogonal expansion functions and by the disappearance of any difficulties caused by singularities at the center of the sphere. The results reported here are for mechanically and magnetically isolated spheres, although different boundary conditions could be studied by adapting the same method. The intent is to be able to study the nonlinear dynamical evolution of those aspects that are peculiar to the spherical geometry at only moderate Reynolds numbers. The code is parallelized, and will preserve to high accuracy the ideal magnetohydrodynamic (MHD) invariants of the system (global energy, magnetic helicity, cross helicity). Examples of results for selective decay and mechanically-driven dynamo simulations are discussed. In the dynamo cases, spontaneous flips of the dipole orientation are observed.Comment: 15 pages, 19 figures. Improved figures, in press in Physics of Fluid

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure

    pi-pi scattering in a QCD based model field theory

    Full text link
    A model field theory, in which the interaction between quarks is mediated by dressed vector boson exchange, is used to analyse the pionic sector of QCD. It is shown that this model, which incorporates dynamical chiral symmetry breaking, asymptotic freedom and quark confinement, allows one to calculate fπf_\pi, mπm_\pi, rπr_\pi and the partial wave amplitudes in π\pi-π\pi scattering and obtain good agreement with the experimental data, with the latter being well described up to energies \mbox{E≃700E\simeq 700 MeV}.Comment: 23 Pages, 4 figures in PostScript format, PHY-7512-TH-93, REVTEX Available via anonymous ftp in /pub: login anonymou get pipi93.tex Fig1.ps Fig2.ps Fig3.ps Fig4.p
    • …
    corecore