2,617 research outputs found

    Electronic States in Diffused Quantum Wells

    Full text link
    In the present study we calculate the energy values and the spatial distributions of the bound electronic states in some diffused quantum wells. The calculations are performed within the virtual crystal approximation, sp3ssp^3 s^* spin dependent empirical tight-binding model and the surface Green function matching method. A good agreement is found between our results and experimental data obtained for AlGaAs/GaAs quantum wells with thermally induced changes in the profile at the interfaces. Our calculations show that for diffusion lengths LD=20÷100L_{D}=20\div100 {\AA} the transition (C3-HH3) is not sensitive to the diffusion length, but the transitions (C1-HH1), (C1-LH1), (C2-HH2) and (C2-LH2) display large "blue shifts" as L_{D} increases. For diffusion lengths LD=0÷20L_{D}=0\div20 {\AA} the transitions (C1-HH1) and (C1-LH1) are less sensitive to the L_{D} changes than the (C3-HH3) transition. The observed dependence is explained in terms of the bound states spatial distributions.Comment: ReVTeX file, 7pp., no macros, 4 figures available on the reques

    Optimization of Cutaneous Electrically Mediated Plasmid DNA Delivery Using Novel Electrode

    Get PDF
    The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo. A critical component of this technique is the electrode configuration. Electroporation parameters were optimized for transgene expression with minimal tissue damage with a novel electrode. The highest transgene expression and efficiency of individual cell transformation with minimal damage was produced with eight 150 ms pulses at field strength of 100 V/cm. This electrode design offers the potential for easier and more reproducible electrically mediated cutaneous plasmid delivery than the simple electrodes currently commercially available. This electrode can be a valuable tool in determining the applicability of electrically mediated cutaneous gene transfer

    Electrically Mediated Plasmid DNA Delivery to Hepatocellular Carcinomas in Vivo

    Get PDF
    Gene therapy by direct delivery of plasmid DNA has several advantages over viral gene transfer, but plasmid delivery is less efficient. In vivo electroporation has been used to enhance delivery of chemotherapeutic agents to tumors in both animal and human studies. Recently, this delivery technique has been extended to large molecules such as plasmid DNA. Here, the successful delivery of plasmids encoding reporter genes to rat hepatocellular carcinomas by in vivo electroporation is demonstrated

    Non-equilibrium h-2 formation in the early universe: energy exchanges, rate coefficients, and spectral distortions

    Get PDF
    Energy exchange processes play a crucial role in the early universe, affecting the thermal balance and the dynamical evolution of the primordial gas. In the present work we focus on the consequences of a non-thermal distribution of the level populations of H2: first, we determine the excitation temperatures of vibrational transitions and the non-equilibrium heat transfer; second, we compare the modifications to chemical reaction rate coefficients with respect to the values obtained assuming local thermodynamic equilibrium; and third, we compute the spectral distortions to the cosmic background radiation generated by the formation of H2 in vibrationally excited levels. We conclude that non-equilibrium processes cannot be ignored in cosmological simulations of the evolution of baryons, although their observational signatures remain below current limits of detection. New fits to the equilibrium and non-equilibrium heat transfer functions are provided

    EPB41L5 is Associated with the Metastatic Potential of Low-grade Pancreatic Neuroendocrine Tumors

    Get PDF
    Background/Aim: Low-grade pancreatic neuroendocrine tumors (LG-PNETs) behave unpredictably. The aim of the study was to identify biomarkers that predict PNET metastasis to improve treatment selection. Patients and Methods: Five patients with primary non-metastatic LG-PNETs, six with primary LG-PNETs with synchronous or metachronous metastases (M-PNETs), and six metastatic to liver LG-PNETs (ML-PNETs) from the group of six M-PNET patients were selected. RNA data were normalized using iterative rank-order normalization. Student’s t-test identified differentially-expressed genes in LG-PNETs versus M-PNETs. A 2-fold difference in expression was considered to be significant. Results were validated with an independent dataset of LG-PNETs and metastatic LG-PNETs. Results: Overall, 195 genes had a >2-fold change (in either direction). A total of 29 genes were differentially overexpressed in M-PNETs. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) had a 2.07-fold change increase in M-PNETs and the smallest p-value. EPB41L5 was not statistically different between M-PNETs and ML-PNETs. EPB41L5 differential expression between primary and metastatic LG-PNETs was confirmed by immunohistochemistry. Conclusion: These results support further investigation into whether EPB41L5 is a biomarker of PNETs with high risk for metastases

    Vertical‑Surface Navigation in the Neotropical Whip Spider \u3ci\u3eParaphrynus laevifrons\u3c/i\u3e (Arachnida: Amblypygi)

    Get PDF
    Studies on whip spider navigation have focused on their ability to locate goal locations in the horizontal plane (e.g., when moving along the ground). However, many species of tropical whip spiders reside and move along surfaces in the vertical plane (e.g., trees). Under controlled laboratory conditions, the current study investigated the ability of the tropical whip spider, Paraphrynus laevifrons, to return to a home shelter on a vertical surface in the presence of numerous, similar, and competing refuge sites, as well as the distribution of navigational errors in the vertical, horizontal, and diagonal plane. We also assessed the relative importance of sensory cues originating from a previously occupied home shelter compared to the position of a previously occupied shelter in guiding shelter choice. It was found that P. laevifrons displays robust fidelity in relocating a home shelter on a vertical surface. When navigational errors did occur, they were not significantly different in all three directions. Additionally, cue-conflict test trials revealed that cues associated with an original home shelter, likely self-deposited chemical signals, were more important than sources of positional information in guiding the shelter choice of P. laevifrons

    Satellite radiometric remote sensing of rainfall fields: multi-sensor retrieval techniques at geostationary scale

    No full text
    International audienceThe Microwave Infrared Combined Rainfall Algorithm (MICRA) consists in a statistical integration method using the satellite microwave-based rain-rate estimates, assumed to be accurate enough, to calibrate spaceborne infrared measurements on limited sub-regions and time windows. Rainfall retrieval is pursued at the space-time scale of typical geostationary observations, that is at a spatial resolution of few kilometers and a repetition period of few tens of minutes. The actual implementation is explained, although the basic concepts of MICRA are very general and the method is easy to be extended for considering innovative statistical techniques or measurements from additional space-borne platforms. In order to demonstrate the potentiality of MICRA, case studies over central Italy are also discussed. Finally, preliminary results of MICRA validation by ground based remote and in situ measurements are shown and a comparison with a Neural Network (NN) based technique is briefly illustrated

    Visual control of refuge recognition in the whip spider \u3ci\u3ePhrynus marginemaculatus\u3c/i\u3e

    Get PDF
    Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain’s mushroom bodies enable this ability
    corecore