3,650 research outputs found

    The application of remotely sensed data in support of emergency rehabilitation of wildfire-damage areas

    Get PDF
    The depth, texture, and water holding capacity of the soil before the fire in the Bridge Creek area of Deschutes National Forest (1979) were determined from available aerial photography and LANDSAT MSS digital data. Three days after the fire was out, complete coverage of the burned area was acquired on 35 mm color infrared film from a near vertical or low oblique perspective. These photographs were used in assessing the condition of vegetation, and in predicting the likelihood of survival. Negatives from vertical natural photography obtained during the same flight were used to produce 3R prints from which large scale mosaics of the entire burned area were obtained. LANDSAT MSS data obtained on the day the fire was under control were used to evaluate vegetative vigor (by calculating a band 7/band 5 ratio value for each spectral class) and to determine the boundary between altered and unaltered land

    Numerical methods for meteorology and climatology

    Get PDF
    Efficient numerical methods for long term weather forecasting are developed. One implicit and one explicit scheme are compared as to accuracy

    Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop

    Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves

    Get PDF
    It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict attention to high frequency gravitational waves.Comment: 11 pages, RevTe

    Optimal Routing and Control of Multiple Agents Moving in a Transportation Network and Subject to an Arrival Schedule and Separation Constraints

    Get PDF
    We address the problem of navigating a set of moving agents, e.g. automated guided vehicles, through a transportation network so as to bring each agent to its destination at a specified time. Each pair of agents is required to be separated by a minimal distance, generally agent-dependent, at all times. The speed range, initial position, required destination, and required time of arrival at destination for each agent are assumed provided. The movement of each agent is governed by a controlled differential equation (state equation). The problem consists in choosing for each agent a path and a control strategy so as to meet the constraints and reach the destination at the required time. This problem arises in various fields of transportation, including Air Traffic Management and train coordination, and in robotics. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver

    Improving empathy of physicians through guided reflective writing

    Get PDF
    Objectives: This study was designed to explore how guided reflective writing could evoke empathy and reflection in a group of practicing physicians. Methods: Total participants recruited included 40 staff physicians at Cleveland Clinic, a tertiary care academic medical center. Twenty physicians (intervention group) were assigned to participate in a 6-session faculty development program introducing narrative medicine and engaging in guided reflective writing. Ten physicians (comparison group 1) received the assigned course reading materials but did not participate in the course sessions. Ten physicians (comparison group 2) neither received the reading materials nor participated in the sessions. Qualitative analysis of the physicians\u27 reflective writings was performed to identify major themes. The Jefferson Scale of Empathy was administered three times during the course. Results: Qualitative analysis of physicians\u27 writings showed themes of both compassionate solidarity and detached concern. Exploration of negative emotions occurred more frequently than positive ones. The most common writing style was case presentation. A total of 36 staff physicians completed the Jefferson Scale of Empathy. Results of statistical analysis suggested an improvement in empathy in the intervention group at the end of the course (p \u3c 0 .05). Conclusions: These results suggest a faculty development program using guided narrative writing can promote reflection and may enhance empathy among practicing physicians. These findings should encourage medical educators to design additional strategies for enhancing reflection and empathic behavior in trainees and specifically practicing physicians who can role model these behaviors to achieve the ultimate goal of improving the quality of patient care

    A Transiting Jupiter Analog

    Get PDF
    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91±0.02)(0.91\pm0.02) RJupR_{\mathrm{Jup}}, a low orbital eccentricity (0.060.04+0.100.06_{-0.04}^{+0.10}) and an equilibrium temperature of (131±3)(131\pm3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323±0.00061071.2323\pm0.0006 d), paving the way for follow-up of this K=11.8K=11.8 mag target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at https://github.com/CoolWorlds/Kepler-167-Posterior

    The Isaacson expansion in quantum cosmology

    Get PDF
    This paper is an application of the ideas of the Born-Oppenheimer (or slow/fast) approximation in molecular physics and of the Isaacson (or short-wave) approximation in classical gravity to the canonical quantization of a perturbed minisuperspace model of the kind examined by Halliwell and Hawking. Its aim is the clarification of the role of the semiclassical approximation and the backreaction in such a model. Approximate solutions of the quantum model are constructed which are not semiclassical, and semiclassical solutions in which the quantum perturbations are highly excited.Comment: Revtex, 11 journal or 24 preprint pages. REPLACEMENT: A comment on previous work by Dowker and Laflamme is corrected. Utah preprint UU-REL-93/3/1

    Information-disturbance tradeoff in estimating a maximally entangled state

    Full text link
    We derive the amount of information retrieved by a quantum measurement in estimating an unknown maximally entangled state, along with the pertaining disturbance on the state itself. The optimal tradeoff between information and disturbance is obtained, and a corresponding optimal measurement is provided.Comment: 4 pages. Accepted for publication on Physical Review Letter

    Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-14b is Retrograde

    Get PDF
    We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of λ = –4.9 ± 11.9 deg. In contrast, HAT-P-14b is retrograde, with λ = 189.1 ± 5.1 deg. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star
    corecore