765 research outputs found

    Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing

    Get PDF
    International audienceHeavy doping of Ge is crucial for several advanced micro-and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 X 10(20) cm(-3) by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 degrees C reaching an active concentration of similar to 4 x 10(19) cm(-3). No significant As diffusion is detected up to 450 degrees C, where the As activation decreases further to similar to 3 x 10(19) cm(-3). The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge

    The Megamaser Cosmology Project. X. High Resolution Maps and Mass Constraint for SMBHs

    Full text link
    We present high resolution (sub-mas) VLBI maps of nuclear H2O megamasers for seven galaxies. In UGC6093, the well-aligned systemic masers and high-velocity masers originate in an edge-on, flat disk and we determine the mass of the central SMBH to be M_SMBH = 2.58*10^7Msun(+-7%). For J1346+5228, the distribution of masers is consistent with a disk, but the faint high-velocity masers are only marginally detected, and we constrain the mass of the SMBH to be in the range 1.5-2.0*10^7Msun. The origin of the masers in Mrk1210 is less clear, as the systemic and high-velocity masers are misaligned and show a disorganized velocity structure. We present one possible model in which the masers originate in a tilted, warped disk, but we do not rule out the possibility of other explanations including outflow masers. In NGC6926, we detect a set of redshifted masers, clustered within a pc of each other, and a single blueshifted maser about 4.4pc away, an offset that would be unusually large for a maser disk system. Nevertheless, if it is a disk system, we estimate the enclosed mass to be M_SMBH<4.8*10^7 Msun . For NGC5793, we detect redshifted masers spaced about 1.4pc from a clustered set of blueshifted features. The orientation of the structure supports a disk scenario as suggested by Hagiwara et al.(2001). We estimate the enclosed mass to be M SMBH<1.3*10^7 Msun. For NGC2824 and J0350-0127, the masers may be associated with pc or sub-pc scale jets or outflows.Comment: Accepted by Ap

    ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas. I - molecular gas scaling relations, and the effect of the CO/H2 conversion factor

    Full text link
    We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas. ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses in the range 8.5 < log(M*/Msun) < 10. This paper is a data release and initial analysis of the first two semesters of observations, consisting of 42 galaxies observed in CO(2-1). By combining these new CO(2-1) emission line data with archival HI data and SDSS optical spectroscopy, we compile a sample of low-mass galaxies with well defined molecular gas masses, atomic gas masses, and gas-phase metallicities. We explore scaling relations of gas fraction and gas consumption timescale, and test the extent to which our findings are dependent on a varying CO/H2 conversion factor. We find an increase in the H2/HI mass ratio with stellar mass which closely matches semi-analytic predictions. We find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 - 0.13), which decreases with stellar mass. We measure a mean molecular gas consumption timescale for ALLSMOG galaxies of 0.4 - 0.7 Gyr. We also confirm the non-universality of the molecular gas consumption timescale, which varies (with stellar mass) from ~100 Myr to ~2 Gyr. Importantly, we find that the trends in the H2/HI mass ratio, gas fraction, and the non-universal molecular gas consumption timescale are all robust to a range of recent metallicity-dependent CO/H2 conversion factors.Comment: 25 pages, 15 figures. Accepted for publication in MNRA

    Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking

    Get PDF
    Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL · kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise

    Further Closing the Resolution Gap: Integrating Cryo-Soft X-Ray and Light Microscopies

    Get PDF
    Abstract Water megamasers from circumnuclear disks in galaxy centers provide the most accurate measurements of supermassive black hole masses and uniquely probe the subparsec accretion processes. At the same time, these systems offer independent crucial constraints of the Hubble constant in the nearby universe, and thus, the arguably best single constraint on the nature of dark energy. The chances of finding these golden standards are, however, abysmally low, at ?3% overall for any level of water maser emission detected at 22 GHz and ?1% for those exhibiting disk-like configuration. We provide here a thorough summary of the current state of detection of water megamaser disks along with a novel investigation of the likelihood of increasing their detection rates based on a multivariate parameter analysis of the optical and mid-infrared (mid-IR) photometric properties of the largest database of galaxies surveyed for 22 GHz emission. We find that galaxies with water megamaser emission tend to be associated with strong emission in all Wide-field Infrared Survey Explorer mid-IR wavelengths, with the strongest enhancement in the W4 band, at 22 μm, as well as with previously proposed and newly found indicators of active galactic nucleus strength in the mid-IR, such as red W1???W2 and W1???W4 colors, and the integrated mid-IR luminosity of the host galaxy. These trends offer a potential boost of the megamaser detection rates to 6%–15%, or a factor of 2–8 relative to the current rates, depending on the chosen sample selection criteria, while fostering real chances for discovering ?20 new megamaser disks

    HIGH-VELOCITY BIPOLAR MOLECULAR EMISSION from AN AGN TORUS

    Get PDF
    We have detected in ALMA observations CO J = 6 - 5 emission from the nucleus of the Seyfert galaxy NGC 1068. The low-velocity (up to +/- 70 km/s relative to systemic) CO emission resolves into a 12x7 pc structure, roughly aligned with the nuclear radio source. Higher-velocity emission (up to +/- 400 km/s) is consistent with a bipolar outflow in a direction nearly perpendicular (roughly 80 degrees) to the nuclear disk. The position-velocity diagram shows that in addition to the outflow, the velocity field may also contain rotation about the disk axis. These observations provide compelling evidence in support of the disk-wind scenario for the AGN obscuring torus.FONDECYT (Grant ID: 3140436), Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from Institute of Physics Publishing via http://dx.doi.org/10.3847/2041-8205/829/1/L

    High-velocity-resolution observations of OH main line lasers in the M82 starburst

    Full text link
    Using the VLA, a series of high velocity resolution observations have been made of the M82 starburst at 1.6 GHz. These observations follow up on previous studies of the main line OH maser emission in the central kiloparsec of this starburst region, but with far greater velocity resolution, showing significant velocity structure in some of the maser spots for the first time. A total of thirteen masers were detected, including all but one of the previously known sources. While some of these masers are still unresolved in velocity, these new results clearly show velocity structure in spectra from several of the maser regions. Position-velocity plots show good agreement with the distribution of H{\sc i} including interesting velocity structure on the blueward feature in the west of the starburst which traces the velocity distribution seen in the ionised gas.Comment: MNRAS in press. 15 pages, 9 figure
    corecore