15,527 research outputs found

    Solitary Waves in Optical Fibers Governed by Higher Order Dispersion

    Get PDF
    An exact solitary wave solution is presented for the nonlinear Schrodinger equation governing the propagation of pulses in optical fibers including the effects of second, third and fourth order dispersion. The stability of this soliton-like solution with sech2 shape is proven by the sign-definiteness of the operator and an integral of the Sobolev type. The main criteria governing the existence of such stable localized pulses propagating in optical fibers are also formulated. A unique feature of these soliton-like optical pulses propagating in a fiber with higher order dispersion is that their parameters satisfy efficient scaling relations. The main soliton solution term given by perturbation theory is also presented when absorption or gain is included in the nonlinear Schrodinger equation. We anticipate that this type of stable localized pulses could find practical applications in communications, slow-light devices and ultrafast lasers.Comment: 4 pages 3 Figure

    Wind tunnel blockage tests at Mach 5 of vacuum duct models for two sound radiation shields

    Get PDF
    Two sound shield models with dummy vacuum exhaust ducts were tested in a Mach 5 pilot quiet tunnel. The first model simulates a new sound shield of 3 in. (7.62 cm) inside diameter and the second model is a shield of 4 in. (10.16 cm) inside diameter. The dummy vacuum exhaust ducts were attached to the external housing of the models. The flow in the first model, which had a by pass mass flow ratio of about 0.6, could not be started except at the two highest test Reynolds numbers where only the central core flow region was started. The flow in the second model with a mass ratio of approximately 0.3 was fully started except at the lowest unit Reynolds number where some unsteadiness and partial flow separation at the wall was observed. Since the external housing and dummy vacuum ducts were the same for both models, these results indicate that the ratio of by pass mass flow to total mass flow for a wind tunnel sound shield of this particular design must be less than about 0.3. Hence, a lower limit is imposed on the inlet diameter of the sound shield in relation to the exit diameter of the wind tunnel nozzle. This lower limit on the inlet diameter may possibly be reduced by improvements in streamlining of the external housing and ducts, by reductions in blockage area, or by the use of external ducting shrouds

    Laminated ferrite memory, phase II FINAL technical report, Jun. 1, 1965 - Jun. 30, 1966

    Get PDF
    Thermally stable ferrite materials tailored to laminated memory arrays operated at low current level

    A Comparative Study of Magnetic Fields in the Solar Photosphere and Chromosphere at Equatorial and Polar Latitudes

    Full text link
    Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower boundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatory's (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12{\deg}, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields are also nearly radial but that during 2008 the chromospheric field in the south pole was expanding superradially. We obtain a spatially resolved polar photospheric flux distribution up to 80{\deg} latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. We briefly discuss implications for future synoptic map construction and modeling

    Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    Get PDF
    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented

    Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield

    Get PDF
    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown

    Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots

    Get PDF
    The central-spin problem, in which an electron spin interacts with a nuclear spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear polarization (DNP) occurs in central spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in spin-based quantum information processing for coherent electron and nuclear spin control. However, the mechanisms limiting DNP remain only partially understood. Here, we show that spin-orbit coupling quenches DNP in a GaAs double quantum dot, even though spin-orbit coupling in GaAs is weak. Using Landau-Zener sweeps, we measure the dependence of the electron spin-flip probability on the strength and direction of in-plane magnetic field, allowing us to distinguish effects of the spin-orbit and hyperfine interactions. To confirm our interpretation, we measure high-bandwidth correlations in the electron spin-flip probability and attain results consistent with a significant spin-orbit contribution. We observe that DNP is quenched when the spin-orbit component exceeds the hyperfine, in agreement with a theoretical model. Our results shed new light on the surprising competition between the spin-orbit and hyperfine interactions in central-spin systems.Comment: 5+12 pages, 9 figure

    A Solidarity Machine? Hong Kong Labour NGOs in Guangdong

    Get PDF
    Although the literature on labour NGOs (LNGOs) in China has significantly expanded, few scholars have attempted to subject the work of these organizations to a Marxist perspective. This article draws on a recently developed Marxian theoretical framework on social movements to analyse the pioneering work of Hong Kong LNGOs and their partners in the province of Guangdong, China. Over the past 15 years, the Hong Kong groups, as they are known collectively, have been ideally placed to develop specific interventions in response to migrant workers’ pursuance of wage claims and improved working conditions during a time of increased rights awareness and widespread labour shortages. While consistently careful to remain the right side of China’s restrictive laws on freedom of association and demonstrations, the Hong Kong LNGOs were able to contribute to a narrative of class-based collective solidarity that has yielded significant gains for workers

    The intensity dependent mass shift: existence, universality and detection

    Full text link
    The electron mass shift in a laser field has long remained an elusive concept. We show that the mass shift can exist in pulses but that it is neither unique nor universal: it can be reduced by pulse shaping. We show also that the detection of mass shift effects in laser-particle scattering experiments is feasible with current technology, even allowing for the transverse structure of realistic beams.Comment: 5 pages, 4 figures. V2: references added, introduction expande
    • …
    corecore