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Solitary waves in optical fibers governed by higher-order dispersion
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An exact solitary wave solution is presented for the nonlinear Schrödinger equation governing the propagation
of pulses in optical fibers including the effects of second-, third-, and fourth-order dispersions. The stability
of this solitonlike solution with a sech2 shape is proven. The main criteria governing the existence of such
stable localized pulses propagating in optical fibers are also formulated. A unique feature of these solitonlike
optical pulses propagating in a fiber with higher-order dispersion is that their parameters satisfy efficient scaling
relations. The main term of the perturbation theory describing ultrashort localized pulses is also presented when
absorption or gain is included in the nonlinear Schrödinger equation. We anticipate that this type of stable
localized pulses could find practical applications in communications, slow-light devices, and ultrafast lasers.
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I. INTRODUCTION

The nonlinear Schrödinger equation has found wide appli-
cation in describing phenomena in nonlinear dispersive media
where it has been used, for example, to model the dynamics
of a Bose-Einstein condensate [1–3], dispersive shock waves
in hydrodynamic media [4], and EM propagation in optical
waveguides [5]. The application of this equation to light
propagation in optical fibers has led to an understanding of
a rich variety of phenomena, including optical wave break-
ing, modulation instability, the generation of solitary waves
and optical solitons [6,7], and parabolic pulses (similaritons)
[8–10]. In the majority of these applications, the nonlinear
Schrödinger equation (NLSE) is used in its simplest form
including only a second-order term to describe the dispersion.
Recently, however, with the advent of silicon photonics and
other nanophotonic technologies, it has become possible to
engineer a wide variety of optical waveguides with complex
dispersion profiles, which are not adequately described by
a simple second-order term in the expansion of the wave
number with frequency.

Solitary waves governed by second- and fourth-order dis-
persions only, have been studied since the 1990s [11–15].
It has been found that for some conditions these quartic
solitons can have decaying oscillating tails [13–16]. These
studies have been based on the assumption that the third-
order dispersion is zero which has limited the experimental
observation of quartic solitons [17]. The recent advent of
silicon photonics has provided a way to generate waveg-
uide structures exhibiting a wide range of dispersion profiles
wherein the propagation of pulses is described by the NLSE
[18–22]. Experimental and numerical evidence for pure-
quartic solitons and periodically modulated propagation for
the higher-order quartic soliton has also been reported [23].
Recently, optical pulses in photonic crystal wavegides have
been observed exhibiting slow-light propagation at particular
frequencies [24].

In this paper we present an exact stationary solitonlike
solution of the generalized nonlinear Schrödinger equation
with second-, third-, and fourth-order dispersion terms. This
stable solitonlike pulse has a velocity which depends on all
orders of dispersion. The solitonlike solution has been derived
by a regular method which will be published elsewhere. The
stability of this solitonlike solution is also demonstrated.
In addition, we have also found an approximate solution
describing ultrashort localized pulses having the same form
but with an exponentially varying amplitude in the case
when an absorption or gain term is included in the nonlinear
Schrödinger equation. Finally, we present the main criteria for
the existence of stable solitary waves propagating in optical
fibers.

II. SOLITARY WAVE SOLUTION

In this section, we present an exact solitary wave solu-
tion of the generalized NLSE with higher-order dispersion
terms. It is also shown that this solution is stable and the
parameters of such localized optical pulses satisfy efficient
scaling relations. Moreover, the derived scaling relations show
that the group velocity of the sech2 solitonlike solution can
be significantly reduced for appropriate parameters of the
waveguide, which may find application in developing slow-
light systems.

For the standard assumptions of the slowly varying enve-
lope, instantaneous nonlinear response, and no higher-order
nonlinearities, the generalized NLSE for the pulse envelope
ψ (z, τ ) has the form [25–27]

i
∂ψ

∂z
= α

∂2ψ

∂τ 2
+ iσ

∂3ψ

∂τ 3
− ε

∂4ψ

∂τ 4
− γ |ψ |2ψ − i

μ

2
ψ, (1)

where z is the longitudinal coordinate, τ = t − β1z is the
retarded time, α = β2/2, σ = β3/6, ε = β4/24, and γ is
the nonlinear parameter. The parameter βk = (dkβ/dωk )ω=ω0
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is the k-order dispersion of the optical fiber, and β is
the propagation constant. The last term in the NLSE de-
scribes absorption or amplification depending on the sign of
parameter μ.

We have found the following exact solitary wave solution
of Eq. (1) for μ = 0:

ψ (z, τ ) = u sech2[w(τ − η − v−1z)] exp[i(κz − δτ + φ)],

(2)

where η and φ represent the position and phase of the stable
localized pulse at z = 0. The amplitude and inverse temporal
width of the solitary wave are given by

u =
√

−3

10γ ε

(
3σ 2

8ε
− α

)
, w = 1

4

√
4α

5ε
− 3σ 2

10ε2
, (3)

where α < 0, ε < 0, and 8αε > 3σ 2 with γ > 0. The ve-
locity v of the solitary wave in the retarded frame and the
parameters δ and κ are

v = 8ε2

σ (σ 2 − 4αε)
, δ = − σ

4ε
, (4)

κ = − 4

25ε3

(
3σ 2

8
− αε

)2

− σ 2

16ε3

(
3σ 2

16
− αε

)
. (5)

The substitution of the retarded time τ = t − β1z into Eq. (2)
shows that δ and κ + β1δ are the frequency and wave-number
shifts, respectively. This solitary wave solution we call a soli-
ton below for simplicity. We emphasize that this soliton does
not have a nontrivial free parameter. Moreover the velocity
of such solitons is fixed because the generalized NLSE is not
invariant with respect to Galilean transformations. Equation
(3) with γ > 0 yields the next relations ε < 0 and α <

3σ 2/8ε. Hence the velocity is positive v > 0 when β3 < 0,
and the velocity is negative v < 0 when β3 > 0. In the case
when β3 = 0 the solution reduces to that given in Ref. [12].
Equation (1) for μ = 0 can also be written as

i
∂ψ

∂z
= − δH

δψ∗ , (6)

where H is the Hamiltonian of the system. The stability
of this soliton solution is proven by the method developed
in Ref. [15]. This method yields the stability region which
is the same as the region of existence of sech2 solitons:
β2 < 0, β4 < 0, and 2β2β4 > β2

3 , where β3 can be negative,
positive, or zero. The proof is based on the boundedness of the
Hamiltonian for a fixed value of soliton energy and an explicit
soliton solution presented in Eq. (2).

The energy E of the solitons for μ = 0 is given by

E =
∫ +∞

−∞
|ψ (z, τ )|2dτ = 4

γ
√

5|ε|
(

3σ 2

8ε
− α

)3/2

. (7)

Note that the energy E and other parameters of the solitons
satisfy simple scaling relations if the dispersion parameters
are defined in the form: βk = β

(0)
k q where k = 2–4 and q is

a positive dimensionless parameter. In this case, the scaling
relations are

E = E0q, u = u0q
1/2, v = v0q

−1, κ = κ0q, (8)

and we have w = w0 and δ = δ0. Here E0 is given by Eq. (7)
with the changes α �→ α0, σ �→ σ0, and ε �→ ε0 where α0 =
β

(0)
2 /2, σ0 = β

(0)
3 /6, and ε0 = β

(0)
4 /24. The same change is

assumed for all other relations in Eq. (8). Thus if the parameter
q grows the energy E of the solitons and the absolute value of
the inverse velocity |v|−1 grow proportional to parameter q.
It also follows from Eq. (8) that in this case the amplitude
u of the solitons grows as q1/2. However the width w−1

and the frequency shift δ do not change when the parameter
q grows. Note that the velocity of the solitons is given by
vs = v/(1 + β1v). Hence the velocity of the solitons tends to
zero when q → ∞ because Eq. (8) yields the scaling relation
vs = v0/(q + β1v0). Nevertheless, the value of the parameter
q is limited in optical fibers. Thus we have demonstrated that
it is possible to create a new type of solitary wave propagating
with reduced speed and high energy with suitable dispersion
profiles.

We anticipate that the scaling feature of sech2 solitons can
find various practical applications. As an example, tunable
all-optical delay systems that dynamically manipulate the
group velocity of light have received a great deal of attention
for optical information processing applications, such as data
buffering and synchronization. Various slow-light devices
have been explored as potential realizations of a practical
delay system [28–32].

III. ENERGY AND MOMENTUM INTEGRALS OF MOTION

In this section, we consider the energy and momentum inte-
grals of motion of sech2 solitonlike solution in the dimension-
less form. It is efficient to reduce the number of parameters of
the NLSE using appropriate dimensionless variables. Without
loss of generality we can define the next new variables,

ψ (z, τ ) = QU (ζ, ξ ), Q = |α|√
γ |ε| , (9)

where ζ = z/l and ξ = τ/τ0. We also define here the length
l = |ε|/α2 and time τ0 = √

ε/α with α < 0 and ε < 0. In this
case Eq. (1) has the dimensionless form

i
∂U

∂ζ
= −∂2U

∂ξ 2
+ iλ

∂3U

∂ξ 3
+ ∂4U

∂ξ 4
− |U |2U − i

�

2
U, (10)

where λ = σ/
√

αε and � = μl = μ|ε|/α2 are two dimen-
sionless parameters. We emphasize that λ does not depend on
the parameter q when we consider the scaling relations given
in Eq. (8). However the dimensionless parameter � = �0q

−1

tends to zero when q → ∞.
In the case when � = 0 the soliton solution of Eq. (10)

depends on a single fiber parameter λ and has the form

U (ζ, ξ ) = uλsech2
[
wλ

(
ξ − ξ0 − v−1

λ ζ
)]

exp[i�(ζ, ξ )],

(11)

where λ2 < 8/3 and ξ0 is the position of the soliton at ζ =
0. The dimensionless inverse velocity and the phase of the
soliton are

v−1
λ = λ3/8 − λ/2, �(ζ, ξ ) = kλζ − dλξ + φ. (12)
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FIG. 1. Shape |U | = uλsech2(wλT ) of the soliton for λ =
λn: λ0 = 0, λ1 = ±0.6, λ2 = ±0.9, λ3 = ±1.2, and λ4 = ±1.5.
Peak of amplitude monotonically decreases for increasing |λn|.

The amplitude uλ and inverse width wλ of the soliton are

uλ =
√

3

10

(
1 − 3λ2

8

)
, wλ =

√
1

20

(
1 − 3λ2

8

)
. (13)

Thus the amplitude uλ and width w−1
λ of the soliton are related

by uλw
−2
λ = 2

√
30. The functions kλ and dλ connected to the

wave number and frequency shifts of the soliton are given by

kλ = 4

25

(
3λ2

8
− 1

)2

+ λ2

16

(
3λ2

16
− 1

)
, dλ = λ

4
. (14)

In Fig. 1 we show the shape |U | of solitons in Eq. (11) for
different values of dimensionless parameter λ: λ0 = 0, λ1 =
±0.6, λ2 = ±0.9, λ3 = ±1.2, and λ4 = ±1.5. We also plot
in Fig. 2 the inverse velocity v−1

λ and the inverse temporal
width wλ of the solitons for the region |λ| <

√
8/3. The
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FIG. 2. Inverse velocity v−1
λ (solid line) and inverse temporal

width wλ (dashed line) of the soliton for −√
8/3 < λ <

√
8/3.
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FIG. 3. Energy Eλ (solid line) and momentum Mλ (dashed line)
of the soliton for interval −√

8/3 < λ <
√

8/3.

dimensionless energy of the soliton is the integral of motion
when � = 0. In this case we have

Eλ =
∫ +∞

−∞
|U |2dξ = 4√

5

(
1 − 3λ2

8

)3/2

. (15)

Another integral of motion when � = 0 is the momentum. The
dimensionless momentum of the soliton is

Mλ =
∫ +∞

−∞
i

(
U

∂U ∗

∂ξ
− U ∗ ∂U

∂ξ

)
dξ

= − 2λ√
5

(
1 − 3λ2

8

)3/2

. (16)

Hence we have the relation Mλ = −(λ/2)Eλ. In Fig. 3, the
energy Eλ and momentum Mλ of the solitons are plotted over
the region |λ| <

√
8/3.

IV. ABSORPTION AND AMPLIFICATION
OF OPTICAL PULSES

In this section, the perturbation theory based on scaling
transformation is applied to Eq. (10). Thus we consider below
Eq. (10) where the last term on the right side describes
absorption or amplification of the pulses in the optical fiber for
� > 0 and � < 0, respectively. It is shown in Appendices A
and B that in the case when |�| � 1 the perturbation method
based on scaling transformation leads to efficient procedure.
In this approach the scaling transformation is given by

U (ζ, ξ ) = F (ζ )V (Z, T ), (17)

where the function V (Z, T ) has the next expansion,

V (Z, T ) = V0(Z, T ) + �V1(Z, T ) + �2V2(Z, T ) + · · · .

(18)

It is shown in Eqs. (A12) and (A13) (see also Appendix
B) that scaling function has the form F (ζ ) = e−�ζ and new
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variables Z and T are

Z = 1

2�
(1 − e−2�ζ ), T = T0 + e−�ζ (ξ − ξ0). (19)

The transformation of Eq. (10) by Eqs. (17) and (19) yields
the equation for the function V (Z, T ) as

i
∂V

∂Z
+ ∂2V

∂T 2
− iλ

√
1 − 2�Z

∂3V

∂T 3
− (1− 2�Z)

∂4V

∂T 4
+ |V |2V

= i�

1 − 2�Z

[
V

2
+ (T − T0)

∂V

∂T

]
. (20)

We assume that two conditions are satisfied: |�| � 1 and
2|�|Z � 1. The second inequality is |1 − e−2�ζ | � 1, and
hence it yields the next relation 2|�|ζ � 1.

Equations (18) and (20) and the above two conditions lead
to the next equation,

i
∂V0

∂Z
= −∂2V0

∂T 2
+ iλ

∂3V0

∂T 3
+ ∂4V0

∂T 4
− |V0|2V0. (21)

Equation (17) and new variables Z(ζ ) and T (ζ, ξ ) defined in
Eq. (19) yield the approximate solution of Eq. (10) to the first
order in small parameter |�| as

U (ζ, ξ ) = exp(−�ζ )V0[Z(ζ ), T (ζ, ξ )], (22)

where the function V0(Z, T ) is defined in Eq. (21). We empha-
size that the scaling function F (ζ ) = e−�ζ and new variables
Z and T in Eq. (19) are found under condition that Eq. (21)
for the function V0(Z, T ) has the same form as Eq. (10) with
� = 0. Hence the solitary wave solution of Eq. (21) is given
by Eq. (11) with the changes ζ �→ Z and ξ − ξ0 �→ T − T0.
Using this exact solution of Eq. (21) we can write by Eq. (22),
the approximate solution of Eq. (10), to the first order in small
parameter |�| � 1 as

U (ζ, ξ ) = uλe
−�ζ sech2

{
wλ

[
e−�ζ (ξ − ξ0) − v−1

λ f (ζ )
]}

× exp[ikλf (ζ ) − idλe
−�ζ (ξ − ξ0) + i(φ − dλξ0)],

(23)

where f (ζ ) = (1 − e−2�ζ )/2�. It is also assumed here that
the condition 2|�|ζ � 1 is satisfied. The transformation of the
solution in Eq. (23) to the function ψ (z, τ ) by Eq. (9) yields
the approximate solution of Eq. (1) as

ψ (z, τ ) = ue−μzsech2{we−μz[τ − η − v−1μ−1sh(μz)]}
× exp[iκg(z) − iδe−μz(τ − η) + i(φ − δη)],

(24)

where g(z) = (1 − e−2μz)/2μ. It is assumed that two condi-
tions are satisfied: |με|/α2 � 1 and 2|μ|z � 1. Equation (24)
for different signs of the parameter μ describes decay (μ > 0)
or amplification (μ < 0) of the localized pulses. It follows
from Eq. (24) that the initial pulse at z = 0 is given by the
solitary wave solution in Eq. (2). In the limit when μ → 0
the solution in Eq. (24) tends to the exact solution given in
Eq. (2). It also follows from Eq. (24) that the velocity of the
peak amplitude |ψ (z, τ )| of the pulses in the retarded frame is
v(z) = v sech(μz).

Equation (1) leads to the differential equation for the
energy E(z) of localized pulses as

dE(z)

dz
= −μE(z), E(z) =

∫ +∞

−∞
|ψ (z, τ )|2dτ. (25)

This exact equation has the solution E(z) = Ee−μz where
the energy E is given in Eq. (7). It is worth noting that the
approximate solution in Eq. (24) leads to the same energy
E(z) as the exact Eq. (25). It has been observed by numer-
ical simulations [33] that perturbation of the NLSE in such
systems does not destroy the form of the ultrashort pulses
for enough long propagating distances. However the energy
of the pulses is changing as in Eq. (25). These numerical
results confirm that Eq. (1) leads to the production of stable
short pulses with changing energy which is consistent with
our approximate analytical solution.

In the case when the velocity vs = (v−1 + β1)−1 of the
localized pulses is negative, it is useful to change the co-
ordinate system to the inverse direction. It can be shown
that such a transformation in the solution ψ (z, τ ) of Eq. (1)
is given by ψ �→ ψ∗, z �→ −z, β1 �→ −β1, β3 �→ −β3, and
μ �→ −μ. The solutions in Eqs. (2) and (24) are invariant
to this transformation because the phase φ is an arbitrary
constant. However, the velocity v in the retarded frame and
the parameter β1 change sign after this transformation, and
then the velocity of the localized pulses vs becomes positive.

Note that we have neglected in the generalized NLSE the
Raman and higher-order nonlinear effects which lead to the
next necessary condition w−1 > τc for the pulse width. Hence
the width of pulses is restricted by some characteristic time τc

depending on the fiber parameters. Moreover Eq. (13) leads
to the relation λ2 < 8/3 which is a necessary condition for
the existence of the soliton solution. These two criteria for the
existence of sech2 solitons can be written as

2β2β4 > β2
3 , |β4|

(
2β2β4 − β2

3

)−1/2
>

√
0.3τc, (26)

where β2 < 0 and β4 < 0. Note that the dispersion parameters
of silicon-based structures (for example, those in Ref. [17])
satisfy the criteria in Eq. (26) for appropriate geometry and
materials of the structures. We also emphasize that in the case
when β3 < 0 the velocity vs of the soliton is positive and
the inequality vs < β−1

1 is satisfied. In the limiting case when
β3 = 0, we have the relation vs = β−1

1 where β−1
1 is the group

velocity.

V. DISCUSSION AND CONCLUSION

The nonlinear Schrödinger equation is a powerful mathe-
matical model which has found wide application in the nonlin-
ear description of many different physical systems, including
water waves, Bose-Einstein condensates, and plasmas. One
of the most important applications of the equation, however,
has been in the description of pulse propagation in single-
mode optical waveguides. In this application, by far the most
widespread use of the equation has been in the simplest form
where the dispersion of the waveguide is characterized only
up to the second order. In this form the equation predicts
many well-characterized phenomena including soliton prop-
agation, modulation instability, self-steepening, and parabolic
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pulse propagation for various appropriate combinations of the
nonlinearity and second-order dispersion parameters.

The dispersion of conventional single-mode optical fiber
waveguides can be well approximated by an expansion up to
second order around a central wavelength, and consequently,
pulse propagation is appropriately modeled by the NLSE
with only a second-order dispersion term. It is now possible,
however, to generate optical waveguides with a wide range of
dispersion profiles either by drawing optical fibers containing
an array of holes or more recently by using silicon photonics
and slot-based waveguides. For waveguides with complex
dispersion profiles, it is becoming increasingly important to
consider higher-order terms in the expansion describing the
dispersion of the waveguide, particularly, in the region close
to the zero group-velocity dispersion (GVD) wavelength, and
consequently, to look for solutions of the NLSE containing
higher-order dispersion terms.

Twenty-five years ago, Höök and Karlsson [11] considered
the formation of pulses in a waveguide characterized by
second- and fourth-order dispersion terms only. This equation
is appropriate when the third-order dispersion term vanishes,
that is, at a local minimum or maximum of the GVD. They
noted that an exact solitary solution to this equation existed
having a sech2 shape. These quartic solitons as they became
known have mainly been regarded as having mathematical
interest only as it was immediately recognized that the solu-
tion cannot apply as soon as any perturbation (for example,
Raman-induced intrapulse self-frequency shifting) introduced
a frequency offset from the point where the third-order dis-
persion vanishes. Consequently, this solution has been largely
ignored in the past two decades, although it has recently
been the subject of renewed interest with the development of
silicon-photonics-enabled waveguides.

We present here an exact solitary wave solution that applies
for all orders of dispersion up to the fourth order and is not
subject to the problem discussed above. Indeed, although this
general solution reduces to that found earlier when the third-
order dispersion vanishes, more importantly, the solution ex-
hibits interesting behavior when the third-order dispersion
is nonzero. In this case the velocity of the pulse can be
significantly reduced, enabling slow-light pulse propagation
by appropriate manipulation of the dispersion parameters. The
energy of the exact solution also grows as the group velocity
decreases, leading to other interesting potential applications.
We also show by using a perturbation technique that, in the
presence of gain or loss, the optical pulse remains stable
and propagates with an exponentially growing or decaying
amplitude. It is important to note that this solution contains no
free parameters, unlike the familiar sech-shaped soliton fam-
ily, which has a well-known amplitude-width relationship. As
with the normal soliton solution, the sech2 soliton exists only
in the anomalous dispersion regime subject to relationships
among the three dispersion parameters. These constraints,
however, have already been shown to be met by previously
characterized silicon-photonics-enabled waveguides, which
can therefore support these solutions.

In addition to demonstrating the existence of this sech2

solution, we have shown that the pulses are stable and by
using a perturbation approach we have shown that the solution
also applies in the more realistic situation when absorption or

gain terms are included in the NLSE. We anticipate that these
solitary waves could find significant application in optical
systems, whereas the solution may also find application in
the other areas of application of the nonlinear Schrödinger
equation.
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APPENDIX A: SCALING TRANSFORMATION

The perturbation theory for the generalized nonlinear
Schrödinger equation can be developed using a scaling trans-
formation (ST). The ST depends on the form of the NLSE and
the perturbation term. First, we demonstrate this perturbation
method using the NLSE in its simplest form including only the
second-order term to describe the dispersion. This allows us
to compare this approach with well-known results. The more
complicated form of the NLSE with different perturbation
terms can be treated using the same method with an appro-
priate ST. Thus we consider in this appendix the normalized
NLSE with the perturbation term as

i
∂U

∂ζ
+ 1

2

∂2U

∂ξ 2
+ |U |2U = −i

�

2
U, (A1)

where the dimensional parameter � > 0 or � < 0 describes
absorption or amplification of the pulses in an optical fiber.
This NLSE with the perturbation term on the right side has
been studied experimentally [34] and theoretically [35,36]. In
the general case, the perturbed solution of the NLSE can be
written in the form

U (ζ, ξ ) = F (ζ )V (Z, T ), (A2)

where Z = Z(ζ ), T = T (ζ, ξ ), and F (ζ ) is a real function
of dimensionless propagation distance ζ . Equations (A1) and
(A2) lead to the next equation for the function V (Z, T ),

i
∂V

∂Z

dZ

dζ
+ 1

2

∂2V

∂T 2

(
∂T

∂ξ

)2

+ F 2|V |2V

= − i

2
�V − i

F

dF

dζ
V − i

∂V

∂T

∂T

∂ζ
− 1

2

∂V

∂T

∂2T

∂ξ 2
. (A3)

In the perturbation method, we use the next expansion,

V (Z, T ) = V0(Z, T ) + �V1(Z, T ) + �2V2(Z, T ) + · · · ,

(A4)

where |�| � 1. We also require that the equation for the
function V0(Z, T ) would have the same form as Eq. (A1)
with � = 0. This requirement yields the next relations for new
variables Z and T and scaling function F (ζ ),

dZ

dζ
=

(
∂T

∂ξ

)2

,
dZ

dζ
= F 2, (A5)

where F → 1 and Z → ζ at � → 0. Equation (A5) leads to
the equation F = ±∂T /∂ξ . The solution of this equation with
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positive sign (F = ∂T /∂ξ ) and the boundary condition T =
T0 at ξ = ξ0 is

T = T0 + F (ζ )(ξ − ξ0). (A6)

We have used the positive sign in the above equation because
we require that F → 1 and T − T0 → ξ − ξ0 at ζ → 0. It
is shown below that dF (ζ )/dζ = −�F (ζ ) which yields the
relation dF/dζ = O(�). This relation and Eq. (A6) lead to
the next relation ∂T /∂ζ = O(�). Moreover Eq. (A6) leads
to the equation ∂2T/∂ξ 2 = 0, and hence the right side of
Eq. (A3) has the first order to small parameter |�|. However
this is correct only for restricted distances as 2|�|ζ � 1 which
we show below.

Thus Eqs. (A3)–(A5) lead to the equation for the function
V0(Z, T ) as

i
∂V0

∂Z
+ 1

2

∂2V0

∂T 2
+ |V0|2V0 = 0. (A7)

Equation (A7) has the integral of motion,

E0 =
∫ +∞

−∞
|V0(Z, T )|2dT ,

dE0

dZ
= 0. (A8)

This is correct for any solution of Eq. (A7) decreasing to zero
at T → ±∞ and integrable on L2. The normalized energy of
the optical pulses is

E(ζ ) =
∫ +∞

−∞
|U (ζ, ξ )|2dξ = F (ζ )

∫ +∞

−∞
|V (Z, T )|2dT .

(A9)

We have used here the relation dξ = dT /F (ζ ) (for the fixed
variable ζ ) which follows from Eq. (A6). Equation (A1) leads
to the well-known equation for normalized energy,

dE(ζ )

dζ
= −�E(ζ ). (A10)

Equations (A9) and (A10) in the first order to small parameter
|�| are

E0(ζ ) = F (ζ )
∫ +∞

−∞
|V0(Z, T )|2dT ,

dE0(ζ )

dζ
= −�E0(ζ ). (A11)

Thus Eqs. (A8) and (A11) yield the next equations: E0(ζ ) =
E0F (ζ ) and dF (ζ )/dζ = −�F (ζ ). The last equation with the
condition F → 1 at � → 0 leads to the function F (ζ ),

F (ζ ) = exp(−�ζ ). (A12)

We assume that the next condition is satisfied: Z → ζ at � →
0. In this case Eqs. (A5), (A6), and (A12) yield the functions
Z(ζ ) and T (ζ, ξ ) as

Z(ζ ) = 1

2�
(1 − e−2�ζ ), T (ζ, ξ ) = T0 + e−�ζ (ξ − ξ0).

(A13)
We emphasize that the scaling function F (ζ ) and new

variables Z and T are defined under the condition that the
equation for the function V0(Z, T ) would have the same
form as Eq. (A1) at � = 0. This is a basic principle of our
approach based on scaling transformation. Thus the solution

of Eq. (A7) is the same as solution of Eq. (A1) for � = 0 with
the appropriate change in variables: ζ �→ Z and ξ − ξ0 �→
T − T0.

APPENDIX B: FIRST-ORDER SOLUTIONS

In this appendix we present the general form of the solu-
tions of the NLSE to the first order in the small parameter
|�|. This general form given by Eq. (B3) can also be applied
to the generalized NLSE with higher-order dispersion. Equa-
tions (A1) and (A3) with the function F (ζ ) = exp(−�ζ ) and
variables Z and T in Eq. (A13) lead to the next equation,

i
∂V

∂Z
+ 1

2

∂2V

∂T 2
+ |V |2V = i�

1 − 2�Z

(
V

2
+ (T − T0)

∂V

∂T

)
.

(B1)

We assume that the function V0(Z, T ) is decreasing to zero
at T → ±∞ and integrable on L2. Moreover we also assume
that two conditions are satisfied: |�| � 1 and 2|�|Z � 1. The
last condition can also be written as 2|�|ζ � 1. In this case
Eq. (B1) and the expansion in Eq. (A4) lead to the system of
equations for the functions Vn(Z, T ) with n = 0, n = 1, n =
2, . . . . As an example, the functions V0(Z, T ) and V1(Z, T )
are given by Eq. (A7) and the next equation,

i
∂V1

∂Z
+ 1

2

∂2V1

∂T 2
+ 2|V0|2V1 + V 2

0 V ∗
1

= i

(
V0

2
+ (T − T0)

∂V0

∂T

)
. (B2)

Thus, if the conditions |�| � 1 and 2|�|ζ � 1 are satisfied,
the approximate solution of Eq. (A1) to the first order in the
small parameter |�| is

U (ζ, ξ ) = F (ζ )V0[Z(ζ ), T (ζ, ξ )], (B3)

where the function V0(Z, T ) is a solution of Eq. (A7). More-
over, we require that this function is integrable on L2. For an
example, the soliton solution of Eq. (A7) has the form

V0(Z, T ) = A sech[A(T − T0) + BZ] exp[i(A2 − B2)Z/2

− iB(T − T0) + i�0]. (B4)

In this case Eqs. (A13), (B3), and (B4) yield the approximate
solution of Eq. (A1) to the first order in small parameter |�|
as

U (ζ, ξ ) = Ae−�ζ sech[Ae−�ζ (ξ − ξ0) + D(1 − e−2�ζ )]

× exp[iC(1 − e−2�ζ ) − iBe−�ζ (ξ − ξ0) + i�0],

(B5)

where D = B/2� and C = (A2 − B2)/4�. In the case when
A = 1, B = 0, and ξ0 = �0 = 0, this solution reduces to the
expression in Refs. [35,36].

Note that our approach leads to an infinite variety of
approximate solutions of Eq. (A1). In the general case the
solutions of Eq. (A7) can be found by the inverse scattering
method which leads to the higher-order solitons and an infinite
variety of soliton forms. Hence the solutions of Eq. (A7) found
by the inverse scattering method and Eqs. (A13) and (B3)
yield the appropriate approximate solutions of Eq. (A1) to the
first order in the small parameter |�|.
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Generalized NLSE with higher-order dispersion. The per-
turbation method based on ST leads to an approximate solu-
tion of the normalized NLSE given by Eq. (10). In this case,
Eqs. (A2), (A4)–(A6), and (A8)–(A12) are valid as well. Thus
the function F (ζ ) and new variables Z and T have the same
form as in Eqs. (A12) and (A13). The NLSE given in Eq. (10)
can be written with new variables as

i
∂V

∂Z
+ ∂2V

∂T 2
− iλ

√
1− 2�Z

∂3V

∂T 3
− (1− 2�Z)

∂4V

∂T 4
+ |V |2V

= i�

1 − 2�Z

[
V

2
+ (T − T0)

∂V

∂T

]
, (B6)

where the function V (Z, T ) is defined in Eq. (A2). We assume
that the function V0(Z, T ) is decreasing to zero at T → ±∞

and integrable on L2 and two conditions are satisfied: |�| � 1
and 2|�|ζ � 1. In this case, Eq. (B6) yields the equation,

i
∂V0

∂Z
= −∂2V0

∂T 2
+ iλ

∂3V0

∂T 3
+ ∂4V0

∂T 4
− |V0|2V0. (B7)

This equation has the same form as Eq. (10) with � = 0.
Hence Eqs. (A13) and (B3) and the exact solution in Eq. (11)
lead to the approximate solution of Eq. (10) to the first order
in small parameter |�|. Note that this method can also be
used when the perturbation term has a more complicated form
than we consider above. In the more general case when the
last term in Eq. (10) has a different form, the function F (ζ )
and hence new variables Z(ζ ) and T (ζ, ξ ) also have different
forms.
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