8,879 research outputs found
Experimental investigation on micromilling of oxygen-free, high-conductivity copper using tungsten carbide, chemistry vapour deposition and single-crystal diamond micro tools
Insufficient experimental data from various micro tools limit industrial application
of the micromilling process. This paper presents an experimental comparative investigation into micromilling of oxygen-free, high-conductivity copper using tungsten carbide (WC), chemistry vapour deposition (CVD) diamond, and single-crystal diamond micromilling tools at a uniform 0.4mm diameter. The experiments were carried out on an ultra-precision micromilling
machine that features high dynamic accurate performance, so that the dynamic effect
of the machine tool itself on the cutting process can be reduced to a minimum. Micromachined surface roughness and burr height were characterized using white light interferometry, a scanning electron microscope (SEM), and a precision surface profiler. The influence of variation of cutting parameters, including cutting speeds, feedrate, and axial depth of cut, on surface roughness and burr formation were analysed. The experimental results show that there exists an optimum feedrate at which best surface roughness can be achieved. Optical quality surface roughness can be achieved with CVD and natural diamond tools by carefully selecting machining conditions, and surface roughness, Ra, of the order of 10nm can also be obtained when using micromilling using WC tools on the precision micromilling machine.EU FP6 MASMICRO projec
Iterative Linearized Density Matrix Propagation for Modeling Coherent Energy Transfer in Photosynthetic Light Harvesting
We present results of calculations [1] that employ a new mixed quantum classical iterative density matrix propagation approach (ILDM , or so called Is‐Landmap) [2] to explore the survival of coherence in different photo synthetic models. Our model studies confirm the long lived quantum coherence , while conventional theoretical tools (such as Redfield equation) fail to describe these phenomenon [3,4]. Our ILDM method is a numerical exactly propagation scheme and can be served as a bench mark calculation tools[2]. Result get from ILDM and from other recent methods have been compared and show agreement with each other[4,5]. Long lived coherence plateau has been attribute to the shift of harmonic potential due to the system bath interaction, and the harvesting efficiency is a balance between the coherence and dissipation[1]. We use this approach to investigate the excitation energy transfer dynamics in various light harvesting complex include Fenna‐Matthews‐Olsen light harvesting complex[1] and Cryptophyte Phycocyanin 645 [6].
[1] P.Huo and D.F.Coker ,J. Chem. Phys. 133, 184108 (2010) . [2] E.R. Dunkel, S. Bonella, and D.F. Coker, J. Chem. Phys. 129, 114106 (2008). [3] A. Ishizaki and G.R. Fleming, J. Chem. Phys. 130, 234111 (2009). [4] A. Ishizaki and G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009). [5] G. Tao and W.H. Miller, J. Phys. Chem. Lett. 1, 891 (2010). [6] P.Huo and D.F.Coker in preparationNational Science Foundation (CHE-0911635
An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MD simulation
Nanoindentation tests performed in an atomic force microscope have been utilized to directly measure the mechanical properties of single crystal metal thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as 67.0±6.9GPa on average which is in reasonable agreement with the results reported by others. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect. In addition to the experimental work, a three-dimensional nanoindentation model of molecular dynamics (MD) simulations with embedded atom method (EAM) potential is proposed to elucidate the mechanics and mechanisms of nanoindentation of thin films from the atomistic point of view. MD simulations results also show that due to the size effect the plastic deformation via amorphous transformation is more favorable than via the generation and propagation of dislocations in nanoindentation of single crystal copper thin films
Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis
Sorting and separation of microparticles is a challenging problem of
interdisciplinary nature. Existing technologies can differentiate
microparticles by their bulk properties, such as size, density, electric
polarizability, etc. The next level of challenge is to separate particles that
show identical bulk properties and differ only in subtle surface features, such
as functionalization with ligands. In this work, we propose a technique to sort
and separate particles and fluid droplets that differ in surface properties. As
a dispersive medium, we use a nematic liquid crystal (LC) rather than an
isotropic fluid, which allows us to amplify the difference in surface
properties through distinct perturbations of LC order around the dispersed
particles. The particles are placed in a LC cell with spatially distorted
molecular orientation subject to an alternating current electric field. The
gradients of the molecular orientation perform two functions. First, elastic
interactions between these pre-imposed gradients and distortions around the
particles separate the particles with different surface properties in space.
Second, these pre-imposed patterns create electro-osmotic flows powered by the
electric field that transport the sorted particles to different locations thus
separating them. The demonstrated unique sorting and separation capability
opens opportunities in lab-on-a-chip, cell sorting and bio-sensing
applications
(2+1) resonant enhanced multiphoton ionization of H_2 via the E, F^(1)Σ^+_g state
In this paper, we report the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2+1) REMPI of H_2 via the E, F^(1)Σ^+_g state, and compare these with the experimental data of Anderson et al. [Chem. Phys. Lett. 105, 22 (1984)]. These results show that the observed non‐Franck–Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg–valence mixing in the resonant intermediate state
High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).
CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature
Boiling two-phase pressure drop in small diameter tubes
An experimental study of two-phase pressure drop in small diameter tubes is described in this paper. Stainless steel tubes of internal diameter and length of 4.26 mm, 500 mm and 2.01 mm, 211 mm were used. The working fluid was R134a and the range covered was: mass flux 100 – 500 kg/m2s; system pressure 8-14 bar and exit quality up to 0.9. The heat flux applied to the tubes ranged from 13 – 150 kW/m2. The effect of diameter on pressure drop is discussed in this paper and a detailed presentation of the results of the comparison with existing pressure drop correlations, some particularly developed for small tubes, is given
Liquid Crystals with Patterned Molecular Orientation as an Electrolytic Active Medium
Transport of fluids and particles at the microscale is an important theme
both in fundamental and applied science. One of the most successful approaches
is to use an electric field, which requires the system to carry or induce
electric charges. We describe a versatile approach to generate electrokinetic
flows by using a liquid crystal (LC) with surface-patterned molecular
orientation as an electrolyte. The surface patterning is produced by
photo-alignment. In the presence of an electric field, the spatially varying
orientation induces space charges that trigger flows of the LC. The active
patterned LC electrolyte converts the electric energy into the LC flows and
transport of embedded particles of any type (fluid, solid, gaseous) along a
predesigned trajectory, posing no limitation on the electric nature (charge,
polarizability) of these particles and interfaces. The patterned LC electrolyte
exhibits a quadratic field dependence of the flow velocities; it induces
persistent vortices of controllable rotation speed and direction that are
quintessential for micro- and nanoscale mixing applications.Comment: 35 pages, 10 figure
- …
