23 research outputs found

    Sorl1 as an Alzheimer's disease predisposition gene?

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressively disabling impairments in memory, cognition, and non-cognitive behavioural symptoms. Sporadic AD is multifactorial and genetically complex. While several monogenic mutations cause early-onset AD and gene alleles have been suggested as AD susceptibility factors, the only extensively validated susceptibility gene for late-onset AD is the apolipoprotein E (APOE) epsilon4 allele. Alleles of the APOE gene do not account for all of the genetic load calculated to be responsible for AD predisposition. Recently, polymorphisms across the neuronal sortilin-related receptor (SORL1) gene were shown to be significantly associated with AD in several cohorts. Here we present the results of our large case-control whole-genome scan at over 500,000 polymorphisms which presents weak evidence for association and potentially narrows the association interval

    Excited-state dynamics in photosystem II: Insights from the x-ray crystal structure

    No full text
    The heart of oxygenic photosynthesis is photosystem II (PSII), a multisubunit protein complex that uses solar energy to drive the splitting of water and production of molecular oxygen. The effectiveness of the photochemical reaction center of PSII depends on the efficient transfer of excitation energy from the surrounding antenna chlorophylls. A kinetic model for PSII, based on the x-ray crystal structure coordinates of 37 antenna and reaction center pigment molecules, allows us to map the major energy transfer routes from the antenna chlorophylls to the reaction center chromophores. The model shows that energy transfer to the reaction center is slow compared with the rate of primary electron transport and depends on a few bridging chlorophyll molecules. This unexpected energetic isolation of the reaction center in PSII is similar to that found in the bacterial photosystem, conflicts with the established view of the photophysics of PSII, and may be a functional requirement for primary photochemistry in photosynthesis. In addition, the model predicts a value for the intrinsic photochemical rate constant that is 4 times that found in bacterial reaction centers

    Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function

    No full text
    We have identified a lethal phenotype characterized by sudden infant death (from cardiac and respiratory arrest) with dysgenesis of the testes in males [Online Mendelian Inheritance in Man (OMIM) accession no. 608800]. Twenty-one affected individuals with this autosomal recessive syndrome were ascertained in nine separate sibships among the Old Order Amish. High-density single-nucleotide polymorphism (SNP) genotyping arrays containing 11,555 single-nucleotide polymorphisms evenly distributed across the human genome were used to map the disease locus. A genome-wide autozygosity scan localized the disease gene to a 3.6-Mb interval on chromosome 6q22.1-q22.31. This interval contained 27 genes, including two testis-specific Y-like genes (TSPYL and TSPYL4) of unknown function. Sequence analysis of the TSPYL gene in affected individuals identified a homozygous frameshift mutation (457_458insG) at codon 153, resulting in truncation of translation at codon 169. Truncation leads to loss of a peptide domain with strong homology to the nucleosome assembly protein family. GFP-fusion expression constructs were constructed and illustrated loss of nuclear localization of truncated TSPYL, suggesting loss of a nuclear localization patch in addition to loss of the nucleosome assembly domain. These results shed light on the pathogenesis of a disorder of sexual differentiation and brainstem-mediated sudden death, as well as give insight into a mechanism of transcriptional regulation

    A survey of genetic human cortical gene expression

    No full text
    It is widely assumed that genetic differences in gene expression underpin much of the difference among individuals and many of the quantitative traits of interest to geneticists. Despite this, there has been little work on genetic variability in human gene expression and almost none in the human brain, because tools for assessing this genetic variability have not been available. Now, with whole-genome SNP genotyping arrays and whole-transcriptome expression arrays, such experiments have become feasible. We have carried out whole-genome genotyping and expression analysis on a series of 193 neuropathologically normal human brain samples using the Affymetrix GeneChip Human Mapping 500K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. Here we present data showing that 58% of the transcriptome is cortically expressed in at least 5% of our samples and that of these cortically expressed transcripts, 21% have expression profiles that correlate with their genotype. These genetic-expression effects should be useful in determining the underlying biology of associations with common diseases of the human brain and in guiding the analysis of the genomic regions involved in the control of normal gene expression

    Whole genome association analysis shows that ACE is a risk factor for Alzheimer's disease and fails to replicate most candidates from Meta-analysis

    No full text
    For late onset Alzheimer's disease (LOAD), the only confirmed, genetic association is with the apolipoprotein E (APOE) locus on chromosome 19. Meta-analysis is often employed to sort the true associations from the false positives. LOAD research has the advantage of a continuously updated meta-analysis of candidate gene association studies in the web-based AlzGene database. The top 30 AlzGene loci on May 1st, 2007 were investigated in our whole genome association data set consisting of 1411 LOAD cases and neuropathoiogicaiiy verified controls genotyped at 312,316 SNPs using the Affymetrix 500K Mapping Platform. Of the 30 “top AlzGenes", 32 SNPs in 24 genes had odds ratios (OR) whose 95% confidence intervals that did not include 1. Of these 32 SNPs, six were part of the Affymetrix 500K Mapping panel and another ten had proxies on the Affymetrix array that had >80% power to detect an association with α=0.001. Two of these 16 SNPs showed significant association with LOAD in our sample series. One was rs4420638 at the APOE locus (uncorrected p-value=4.58E-37) and the other was rs4293, located in the angiotensin converting enzyme (ACE) locus (uncorrected p-value=0.014). Since this result was nominally significant, but did not survive multiple testing correction for 16 independent tests, this association at rs4293 was verified in a geographically distinct German cohort (p-value=0.03). We present the results of our ACE replication aiongwith a discussion of the statistical limitations of multiple test corrections in whole genome studies

    Evidence for an association between KIBRA and late-onset Alzheimer's disease

    No full text
    We recently reported evidence for an association between the individual variation in normal human episodic memory and a common variant of the KIBRA gene, KIBRA rs17070145 (T-allele). Since memory impairment is a cardinal clinical feature of Alzheimer's disease (AD), we investigated the possibility of an association between the KIBRA gene and AD using data from neuronal gene expression, brain imaging studies, and genetic association tests. KIBRA was significantly over-expressed and three of its four known binding partners under-expressed in AD-affected hippocampal, posterior cingulate and temporal cortex regions (P>0.010, corrected) in a study of laser-capture microdissected neurons. Using positron emission tomography in a cohort of cognitively normal, late-middle-aged persons genotyped for KIBRA rs17070145, KIBRA T non-carriers exhibited lower glucose metabolism than did carriers in posterior cingulate and precuneus brain regions (P>0.001, uncorrected). Lastly, non-carriers of the KIBRA rs17070145 T-allele had increased risk of late-onset AD in an association study of 702 neuropathologically verified expired subjects (P=0.034; OR=1.29) and in a combined analysis of 1026 additional living and expired subjects (P=0.039; OR=1.26). Our findings suggest that KIBRA is associated with both individual variation in normal episodic memory and predisposition to AD

    GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers

    Get PDF
    The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimer's disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimer's neuropathology
    corecore