197 research outputs found

    TCRep 3D: An Automated In Silico Approach to Study the Structural Properties of TCR Repertoires

    Get PDF
    TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling

    Endothelin-1 enhances fibrogenic gene expression, but does not promote DNA synthesis or apoptosis in hepatic stellate cells

    Get PDF
    BACKGROUND: In liver injury, the pool of hepatic stellate cell (HSC) increases and produces extracellular matrix proteins, decreasing during the resolution of fibrosis. The profibrogenic role of endothelin-1 (ET-1) in liver fibrosis remains disputed. We therefore studied the effect of ET-1 on proliferation, apoptosis and profibrogenic gene expression of HSCs. RESULTS: First passage HSC predominantly expressed endothelin A receptor (ETAR) mRNA and 4th passage HSC predominantly expressed the endothelin B receptor (ETBR) mRNA. ET-1 had no effect on DNA synthesis in 1st passage HSC, but reduced DNA synthesis in 4th passage HSC by more than 50%. Inhibition of proliferation by endothelin-1 was abrogated by ETBR specific antagonist BQ788, indicating a prominent role of ETBR in growth inhibition. ET-1 did not prevent apoptosis induced by serum deprivation or Fas ligand in 1st or 4th passage HSC. However, ET-1 increased procollagen α1(I), transforming growth factor β-1 and matrix metalloproteinase (MMP)-2 mRNA transcripts in a concentration-dependent manner in 1st, but not in 4th passage HSC. Profibrogenic gene expression was abrogated by ETAR antagonist BQ123. Both BQ123 and BQ788 attenuated the increase of MMP-2 expression by ET-1. CONCLUSION: We show that ET-1 stimulates fibrogenic gene expression for 1st passage HSC and it inhibits HSC proliferation for 4th passage HSC. These data indicate the profibrogenic and antifibrogenic action of ET-1 for HSC are involved in the process of liver fibrosis

    Otx2 Gene Deletion in Adult Mouse Retina Induces Rapid RPE Dystrophy and Slow Photoreceptor Degeneration

    Get PDF
    International audienceBACKGROUND: Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE), a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells. METHODOLOGY/PRINCIPAL FINDINGS: Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease. CONCLUSIONS: Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE

    CD103 Deficiency Prevents Graft-versus-Host Disease but Spares Graft-versus-Tumor Effects Mediated by Alloreactive CD8 T Cells

    Get PDF
    Graft-versus-host disease (GVHD) remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT) as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT).We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity.These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis

    Hydrophobic CDR3 residues promote the development of self-reactive T cells

    Get PDF
    Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (V[subscript β]) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished V[subscript β]2[superscript +], V[subscript β]6[superscript +] and V[subscript β]8.2[superscript +] regulatory T cells from conventional T cells and also distinguished CD4[superscript +] T cells selected by the major histocompatibility complex (MHC) class II molecule I-A[superscript g7] (associated with the development of type 1 diabetes in NOD mice) from those selected by a non–autoimmunity-promoting MHC class II molecule I-Ab. Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires

    Expression of cytokine and chemokine mRNA and secretion of tumor necrosis factor-α by gallbladder epithelial cells: Response to bacterial lipopolysaccharides

    Get PDF
    BACKGROUND: In addition to immune cells, many other cell types are known to produce cytokines. Cultured normal mouse gallbladder epithelial cells, used as a model system for gallbladder epithelium, were examined for their ability to express the mRNA of various cytokines and chemokines in response to bacterial lipopolysaccharide. The synthesis and secretion of the tumor necrosis factor-α (TNF-α) protein by these cells was also measured. RESULTS: Untreated mouse gallbladder cells expressed mRNA for TNF-α, RANTES, and macrophage inflammatory protein-2 (MIP-2). Upon treatment with lipopolysaccharide, these cells now produced mRNA for Interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1 (MCP-1), and showed increased expression of TNF-α and MIP-2 mRNA. Untreated mouse gallbladder cells did not synthesize TNF-α protein; however, they did synthesize and secrete TNF-α upon treatment with lipopolysaccharide. METHODS: Cells were treated with lipopolysaccharides from 3 strains of bacteria. Qualitative and semi-quantitative RT-PCR, using cytokine or chemokine-specific primers, was used to measure mRNA levels of TNFα, IL-1β, IL-6, IL-10, KC, RANTES, MCP-1, and MIP-2. TNF-α protein was measured by immunoassays. CONCLUSION: This research demonstrates that gallbladder epithelial cells in response to lipopolysaccharide exposure can alter their cytokine and chemokine RNA expression pattern and can synthesize and secrete TNFα protein. This suggests a mechanism whereby gallbladder epithelial cells in vivo may mediate gallbladder secretory function, inflammation and diseases in an autocrine/paracrine fashion by producing and secreting cytokines and/or chemokines during sepsis

    Applicability and precautions of use of liver injury biomarker FibroTest. A reappraisal at 7 years of age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FibroTest (FT) is a validated biomarker of fibrosis. To assess the applicability rate and to reduce the risk of false positives/negatives (RFPN), security algorithms were developed. The aims were to estimate the prevalence of RFPN and of proven failures, and to identify factors associated with their occurrences.</p> <p>Methods</p> <p>Four populations were studied: 954 blood donors (P1), 7,494 healthy volunteers (P2), 345,695 consecutive worldwide sera (P3), including 24,872 sera analyzed in a tertiary care centre (GHPS) (P4). Analytical procedures of laboratories with RFPN > 5% and charts of P4 patients in with RFPN were reviewed.</p> <p>Results</p> <p>The prevalence of RFPN was 0.52% (5/954; 95%CI 0.17-1.22) in P1, 0.51% (38/7494; 0.36-0.70) in P2, and 0.97% (3349/345695; 0.94-1.00) in P3. Three a priori high-risk populations were confirmed: 1.97% in P4, 1.77% in HIV centre and 2.61% in Sub-Saharan origin subjects. RFPN was mostly associated with low haptoglobin (0.46%), and high apolipoproteinA1 (0.21%). A traceability study of a P3 laboratory with RFPFN > 5% permitted to correct analytical procedures.</p> <p>Conclusion</p> <p>The mean applicability rate of Fibrotest was 99.03%. Independent factors associated with the high risk of false positives/negatives were HIV center, subSaharan origin, and a tertiary care reference centre, although the applicability rate remained above 97%.</p

    Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes

    Get PDF
    Most of the cell biological aspects of retroviral genome dimerization remain unknown. Murine leukemia virus (MLV) constitutes a useful model to study when and where dimerization occurs within the cell. For instance, MLV produces a subgenomic RNA (called SD') that is co-packaged with the genomic RNA predominantly as FLSD' heterodimers. This SD' RNA is generated by splicing of the genomic RNA and also by direct transcription of a splice-associated retroelement of MLV (SDARE). We took advantage of these two SD' origins to study the effects of transcription and splicing events on RNA dimerization. Using genetic approaches coupled to capture of RNA heterodimer in virions, we determined heterodimerization frequencies in different cellular contexts. Several cell lines were stably established in which SD' RNA was produced by either splicing or transcription from SDARE. Moreover, SDARE was integrated into the host chromosome either concomitantly or sequentially with the genomic provirus. Our results showed that transcribed genomic and SD' RNAs preferentially formed heterodimers when their respective proviruses were integrated together. In contrast, heterodimerization was strongly affected when the two proviruses were integrated independently. Finally, dimerization was enhanced when the transcription sites were expected to be physically close. For the first time, we report that splicing and RNA dimerization appear to be coupled. Indeed, when the RNAs underwent splicing, the FLSD' dimerization reached a frequency similar to co-transcriptional heterodimerization. Altogether, our results indicate that randomness of heterodimerization increases when RNAs are co-expressed during either transcription or splicing. Our results strongly support the notion that dimerization occurs in the nucleus, at or near the transcription and splicing sites, at areas of high viral RNA concentration
    corecore