347 research outputs found
Asynchronous response of coupled pacemaker neurons
We study a network model of two conductance-based pacemaker neurons of
differing natural frequency, coupled with either mutual excitation or
inhibition, and receiving shared random inhibitory synaptic input. The networks
may phase-lock spike-to-spike for strong mutual coupling. But the shared input
can desynchronize the locked spike-pairs by selectively eliminating the lagging
spike or modulating its timing with respect to the leading spike depending on
their separation time window. Such loss of synchrony is also found in a large
network of sparsely coupled heterogeneous spiking neurons receiving shared
input.Comment: 11 pages, 4 figures. To appear in Phys. Rev. Let
Clustering and Synchronization of Oscillator Networks
Using a recently described technique for manipulating the clustering
coefficient of a network without changing its degree distribution, we examine
the effect of clustering on the synchronization of phase oscillators on
networks with Poisson and scale-free degree distributions. For both types of
network, increased clustering hinders global synchronization as the network
splits into dynamical clusters that oscillate at different frequencies.
Surprisingly, in scale-free networks, clustering promotes the synchronization
of the most connected nodes (hubs) even though it inhibits global
synchronization. As a result, scale-free networks show an additional, advanced
transition instead of a single synchronization threshold. This cluster-enhanced
synchronization of hubs may be relevant to the brain with its scale-free and
highly clustered structure.Comment: Submitted to Phys. Rev.
Optical neuron using polarisation switching in a 1550nm-VCSEL
We report a new approach to mimic basic functionalities of a neuron using a 1550 nm Vertical Cavity Surface Emitting Laser (VCSEL) which is based on the polarisation switching (PS) that can be induced in these devices when subject to polarised optical injection. Positive and negative all-optical threshold operations are demonstrated experimentally using external optical injection into the two orthogonal polarizations of the fundamental transverse mode. The polarisation of the light emitted by the device is used to determine the state of the VCSEL-Neuron, active (orthogonal) or inactive (parallel). This approach forms a new way to reproduce optically the response of a neuron to an excitatory and an inhibitory stimulus. © 2010 Optical Society of America
Small world effect in an epidemiological model
A model for the spread of an infection is analyzed for different population
structures. The interactions within the population are described by small world
networks, ranging from ordered lattices to random graphs. For the more ordered
systems, there is a fluctuating endemic state of low infection. At a finite
value of the disorder of the network, we find a transition to self-sustained
oscillations in the size of the infected subpopulation
Sensitivity analysis of circadian entrainment in the space of phase response curves
Sensitivity analysis is a classical and fundamental tool to evaluate the role
of a given parameter in a given system characteristic. Because the phase
response curve is a fundamental input--output characteristic of oscillators, we
developed a sensitivity analysis for oscillator models in the space of phase
response curves. The proposed tool can be applied to high-dimensional
oscillator models without facing the curse of dimensionality obstacle
associated with numerical exploration of the parameter space. Application of
this tool to a state-of-the-art model of circadian rhythms suggests that it can
be useful and instrumental to biological investigations.Comment: 22 pages, 8 figures. Correction of a mistake in Definition 2.1. arXiv
admin note: text overlap with arXiv:1206.414
Acceleration effect of coupled oscillator systems
We have developed a curved isochron clock (CIC) by modifying the radial
isochron clock to provide a clean example of the acceleration (deceleration)
effect. By analyzing a two-body system of coupled CICs, we determined that an
unbalanced mutual interaction caused by curved isochron sets is the minimum
mechanism needed for generating the acceleration (deceleration) effect in
coupled oscillator systems. From this we can see that the Sakaguchi and
Kuramoto (SK) model which is a class of non-frustrated mean feild model has an
acceleration (deceleration) effect mechanism. To study frustrated coupled
oscillator systems, we extended the SK model to two oscillator associative
memory models, one with symmetric and one with asymmetric dilution of coupling,
which also have the minimum mechanism of the acceleration (deceleration)
effect. We theoretically found that the {\it Onsager reaction term} (ORT),
which is unique to frustrated systems, plays an important role in the
acceleration (de! celeration) effect. These two models are ideal for evaluating
the effect of the ORT because, with the exception of the ORT, they have the
same order parameter equations. We found that the two models have identical
macroscopic properties, except for the acceleration effect caused by the ORT.
By comparing the results of the two models, we can extract the effect of the
ORT from only the rotation speeds of the oscillators.Comment: 35 pages, 10 figure
Path Integral Approach to 't Hooft's Derivation of Quantum from Classical Physics
We present a path-integral formulation of 't Hooft's derivation of quantum
from classical physics. The crucial ingredient of this formulation is Gozzi et
al.'s supersymmetric path integral of classical mechanics. We quantize
explicitly two simple classical systems: the planar mathematical pendulum and
the Roessler dynamical system.Comment: 29 pages, RevTeX, revised version with minor changes, accepted to
Phys. Rev.
Kinetics of photoinduced ordering in azo-dye films: two-state and diffusion models
We study the kinetics of photoinduced ordering in the azo-dye SD1
photoaligning layers and present the results of modeling performed using two
different phenomenological approaches. A phenomenological two state model is
deduced from the master equation for an ensemble of two-level molecular
systems. Using an alternative approach, we formulate the two-dimensional (2D)
diffusion model as the free energy Fokker-Planck equation simplified for the
limiting regime of purely in-plane reorientation. The models are employed to
interpret the irradiation time dependence of the absorption order parameters
extracted from the available experimental data by using the exact solution to
the light transmission problem for a biaxially anisotropic absorbing layer. The
transient photoinduced structures are found to be biaxially anisotropic whereas
the photosteady and the initial states are uniaxial.Comment: revtex4, 34 pages, 9 figure
- …
