123 research outputs found
Recommended from our members
FES rehabilitation platform with real-time control and performance feedback.
Osteoporosis after spinal cord injury is associated with low-trauma fractures, and consequently with increased risk of morbidity and mortality. The loss of bone mass density (BMD) due to paraplegia can be reduced through cyclical electrically-induced muscle contractions. Here we propose an FES control system based on posture switching, that induces transient loading of the lower limbs during a set of standing postures. This aims to produce an increased, evenly distributed BMD, whilst minimising FES-induced muscle fatigue. Here we describe the design and assessment of the FES exercising platform, comprising a controllable multi-channel electrical stimulator and an instrumented standing frame. The platform supports standing and postural shifting, provides real-time human-in-the-loop FES control with on-line feedback to the user. The platforms is used to investigate the effect of regular exercise on the distribution of BMD in people with paraplegia
Recommended from our members
Novel instrumented frame for standing exercising of users with complete spinal cord injuries
This paper describes a Functional Electrical Stimulation (FES) standing system for rehabilitation of bone mineral density (BMD) in people with Spinal Cord Injury (SCI). BMD recovery offers an increased quality of life for people with SCI by reducing their risk of fractures. The standing system developed comprises an instrumented frame equipped with force plates and load cells, a motion capture system, and a purpose built 16-channel FES unit. This system can simultaneously record and process a wide range of biomechanical data to produce muscle stimulation which enables users with SCI to safely stand and exercise. An exergame provides visual feedback to the user to assist with upper-body posture control during exercising. To validate the system an alternate weight-shift exercise was used; 3 participants with complete SCI exercised in the system for 1 hour twice-weekly for 6 months. We observed ground reaction forces over 70% of the full body-weight distributed to the supporting leg at each exercising cycle. Exercise performance improved for each participant by an increase of 13.88 percentage points of body-weight in the loading of the supporting leg during the six-month period. Importantly, the observed ground reaction forces are of higher magnitude than other studies which reported positive effects on BMD. This novel instrumentation aims to investigate weight bearing standing therapies aimed at determining the biomechanics of lower limb joint force actions and postural kinematics
Heterogeneity in semantic priming effect with a lexical decision task in patients after left hemisphere stroke
Next Generation Self-Sanitising Face Coverings: Nanomaterials and Smart Thermo-Regulation Systems
Face masks are essential pieces of personal protective equipment for preventing inhalation of airborne pathogens and aerosols. Various face masks are used to prevent the spread of virus contamination, including blue surgical and N95 filtering masks intended for single use. Traditional face masks with self-sanitisation features have an average filtration efficiency of 50% against airborne viruses. Incorporating nanomaterials in face masks can enhance their filtration efficiency; however, using nanomaterials combined with thermal heaters can offer up to 99% efficiency. Bacterial contamination is reduced through a self-sterilisation method that employs nanomaterials with antimicrobial properties and thermoregulation as a sanitisation process. By combining functional nanomaterials with conductive and functional polymeric materials, smart textiles can sense and act on airborne viruses. This research evaluates the evidence behind the effectiveness of nanomaterials and thermoregulation-based smart textiles used in self-sanitising face masks, as well as their potential, as they overcome the shortcomings of conventional face masks. It also highlights the challenges associated with embedding textiles within nanomaterials. Finally, it makes recommendations regarding safety, reusability, and enhancing the protection of the wearer from the environment and underscores the benefits of reusable masks, which would otherwise pollute the environment. These self-sanitising face masks are environmentally sustainable and ideal for healthcare, the food industry, packaging, and manufacturing
Recommended from our members
The effect of functional electrical stimulation-assisted posture-shifting in bone mineral density: case series-pilot study
Study design
A training intervention study using standing dynamic load-shifting Functional Electrical Stimulation (FES) in a group of individuals with complete spinal cord injury (SCI) T2 to T10.
Objectives
Investigate the effect of FES-assisted dynamic load-shifting exercises on bone mineral density (BMD).
Setting
University Lab within the Biomedical Engineering
Methods
Twelve participants with ASIA A SCI were recruited for this study. Three participants completed side-to-side load-shifting FES-assisted exercises for 29 ± 5 weeks, 2× per week for 1 h, and FES knee extension exercises on alternate days 3× per week for 1 h. Volumetric Bone Mineral density (vBMD) at the distal femur and tibia were assessed using peripheral quantitative computed tomography (pQCT) before and after the intervention study.
Results
Participants with acute and subacute SCI showed an absolute increase of f trabecular vBMD (vBMDTRAB) in the proximal (mean of 26.9%) and distal tibia (mean of 22.35%). Loss of vBMDTRAB in the distal femur was observed.
Conclusion
Improvements in vBMDTRAB in the distal tibia were found in acute and subacute SCI participants, and in the proximal tibia of acute participants, when subjected to anti-gravity FES-assisted load-bearing exercises for 29 ± 5 weeks. No vBMD improvement in distal femur or tibial shaft were observed in any of the participants as was expected. However, improvements of vBMD in the proximal and distal tibia were observed in two participants. This study provides evidence of an improvement of vBMDTRAB, when combining high-intensity exercises with lower intensity exercises 5× per week for 1 h
Relationship between spine osteoarthritis, bone mineral density and bone turn over markers in post menopausal women
Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using Magnetic Resonance Imaging
Recommended from our members
Integrable quadratic Hamiltonians on the Euclidean group of motions
In this paper, we discuss the problem of globally computing sub-Riemannian curves on the Euclidean group of motions SE(3). In particular, we derive a global result for special sub-Riemannian curves whose Hamiltonian satisfies a particular condition. In this paper, sub-Riemannian curves are defined in the context of a constrained optimal control problem. The maximum principle is then applied to this problem to yield an appropriate left-invariant quadratic Hamiltonian. A number of integrable quadratic Hamiltonians are identified. We then proceed to derive convenient expressions for sub-Riemannian curves in SE(3) that correspond to particular extremal curves. These equations are then used to compute sub-Riemannian curves that could potentially be used for motion planning of underwater vehicles
- …
