26,349 research outputs found

    Optimal cloning of single photon polarization by coherent feedback of beam splitter losses

    Full text link
    Light fields can be amplified by measuring the field amplitude reflected at a beam splitter of reflectivity R and adding a coherent amplitude proportional to the measurement result to the transmitted field. By applying the quantum optical realization of this amplification scheme to single photon inputs, it is possible to clone the polarization states of photons. We show that optimal cloning of single photon polarization is possible when the gain factor of the amplification is equal to the inverse squareroot of 1-R.Comment: 10 pages, including 1 figure, extended from letter to full paper, to be published in New Journal of Physic

    Formation of small-scale structure in SUSY CDM

    Get PDF
    The lightest supersymmetric particle, most likely the lightest neutralino, is one of the most prominent particle candidates for cold dark matter (CDM). We show that the primordial spectrum of density fluctuations in neutralino CDM has a sharp cut-off, induced by two different damping mechanisms. During the kinetic decoupling of neutralinos, non-equilibrium processes constitute viscosity effects, which damp or even absorb density perturbations in CDM. After the last scattering of neutralinos, free streaming induces neutralino flows from overdense to underdense regions of space. Both damping mechanisms together define a minimal mass scale for perturbations in neutralino CDM, before the inhomogeneities enter the nonlinear epoch of structure formation. We find that the very first gravitationally bound neutralino clouds ought to have masses above 10^{-6} solar masses, which is six orders of magnitude above the mass of possible axion miniclusters.Comment: 7 pages, 3 figures, to appear in proceedings of "IDM 2002, 4th International Workshop on the Identification of Dark Matter

    Improved solution of the lidar equation utilizing particle counter measurements

    Get PDF
    The extraction of particle backscattering from incoherent lidar measurements poses some problems. In the case of measurements of the stratospheric aerosol layer the solution of the lidar equation is based on two assumptions which are necessary to normalize the measured signal and to correct it with the two-way transmission of the laser pulse. Normalization and transmission are tackled by adding the information contained in aerosol particle counter measurements of the University of Wyoming to the ruby lidar measurements at Garmisch-Partenkirchen. Calculated backscattering from height levels above 25 km for the El Chichon period will be compared with lidar measurements and necessary corrections. The calculated backscatter-to-extinction ratios are compared to those, which were derived from a comparison of published extinction values to measured lidar backscattering at Garmisch. These ratios were used to calculate the Garmisch lidar returns. For the period 4 to 12 months after the El Chichon eruption a backscater-to-extinction ratio of 0.026 1/sr was applied with smaller values before and after that time

    Mean first passage time for fission potentials having structure

    Full text link
    A schematic model of over-damped motion is presented which permits one to calculate the mean first passage time for nuclear fission. Its asymptotic value may exceed considerably the lifetime suggested by Kramers rate formula, which applies only to very special, favorable potentials and temperatures. The additional time obtained in the more general case is seen to allow for a considerable increment in the emission of light particles.Comment: 7 pages, LaTex, 7 postscript figures; Keywords: Decay rate, mean first passage tim

    Measurement of tropospheric carbonyl sulfide by microwave spectrometry

    Get PDF
    Microwave rotational spectrometry is used to measure tropospheric carbonyl sulfide. The instrument and techniques for using it are described

    Quantum walk versus classical wave: Distinguishing ground states of quantum magnets by spacetime dynamics

    No full text
    We investigate wave packet spreading after a single spin flip in prototypical two-dimensional ferromagnetic and antiferromagnetic quantum spin systems. We find characteristic spatial magnon density profiles: While the ferromagnet shows a square-shaped pattern reflecting the underlying lattice structure, as exhibited by quantum walkers, the antiferromagnet shows a circular-shaped pattern which hides the lattice structure and instead resembles a classical wave pattern. We trace these fundamentally different behaviors back to the distinctly different magnon energy-momentum dispersion relations and also provide a real-space interpretation. Our findings point to opportunities for real-time, real-space imaging of quantum magnets both in materials science and in quantum simulators

    Vacuum structure of a modified MIT Bag

    Full text link
    An alternative to introducing and subsequently renormalizing classical parameters in the expression for the vacuum energy of the MIT bag for quarks is proposed in the massless case by appealing to the QCD trace anomaly and scale separation due to asymptotic freedom. The explicit inclusion of gluons implies an unrealistically low separation scale.Comment: 5 pages, 2 figure
    corecore