467 research outputs found
Steady operation of the electric drive of pipeline armature in the emergency situation at low ambient temperatures
This scientific work is devoted to the study of the electric drive operation of pipeline armature at low ambient temperatures. Hit of moisture into reducer and rare inclusions in operation of locking regulator are led to curdling lubricant that causes the increased wear of mechanical knots. There is a probability of freezing mechanical components; it leads to emergency situations. The problem of improving working efficiency of the electric drive of shut-off regulating armature at low ambient temperatures of the environment is solved in this work. A simulation model of the GUSAR electric drive was developed to solve this problem. Studies of the simulation model show the need to limit the torque increase rate on a drive motor shaft. The algorithm of setting of PI speed controller to obtain acceptable transient processes is suggested. Recommendations for the use of the algorithm in the microprocessor control system of electric drive are proposed. It is shown that the electric drive operation algorithm with torque increasing limitation on the motor shaft will be smoothly working off the perturbing actions that occur in pipeline armature
The importance of imprinting in the human placenta.
As a field of study, genomic imprinting has grown rapidly in the last 20 years, with a growing figure of around 100 imprinted genes known in the mouse and approximately 50 in the human. The imprinted expression of genes may be transient and highly tissue-specific, and there are potentially hundreds of other, as yet undiscovered, imprinted transcripts. The placenta is notable amongst mammalian organs for its high and prolific expression of imprinted genes. This review discusses the development of the human placenta and focuses on the function of imprinting in this organ. Imprinting is potentially a mechanism to balance parental resource allocation and it plays an important role in growth. The placenta, as the interface between mother and fetus, is central to prenatal growth control. The expression of genes subject to parental allelic expression bias has, over the years, been shown to be essential for the normal development and physiology of the placenta. In this review we also discuss the significance of genes that lack conservation of imprinting between mice and humans, genes whose imprinted expression is often placental-specific. Finally, we illustrate the importance of imprinting in the postnatal human in terms of several human imprinting disorders, with consideration of the brain as a key organ for imprinted gene expression after birth
MLH1-methylated endometrial cancer under 60 years of age as the “sentinel” cancer in female carriers of high-risk constitutional MLH1 epimutation
Objective. Universal screening of endometrial carcinoma (EC) for mismatch repair deficiency (MMRd) and Lynch syndrome uses presence of MLH1 methylation to omit common sporadic cases from follow-up germline testing. However, this overlooks rare cases with high-risk constitutional MLH1 methylation (epimutation), a poorly-recognized mechanism that predisposes to Lynch-type cancers with MLH1 methylation. We aimed to de-termine the role and frequency of constitutional MLH1 methylation among EC cases with MMRd, MLH1- methylated tumors.Methods. We screened blood for constitutional MLH1 methylation using pyrosequencing and real-time methylation-specific PCR in patients with MMRd, MLH1-methylated EC ascertained from (i) cancer clinics (n = 4, <60 years), and (ii) two population-based cohorts; Columbus-area (n = 68, all ages) and Ohio Colo-rectal Cancer Prevention Initiative (OCCPI) (n = 24, <60 years).Results. Constitutional MLH1 methylation was identified in three out of four patients diagnosed between 36 and 59 years from cancer clinics. Two had mono-/hemiallelic epimutation (similar to 50% alleles methylated). One with multiple primaries had low-level mosaicism in normal tissues and somatic second-hits affecting the unmethylated allele in all tumors, demonstrating causation. In the population-based cohorts, all 68 cases from the Columbus-area cohort were negative and low-level mosaic constitutional MLH1 methylation was identified in one patient aged 36 years out of 24 from the OCCPI cohort, representing one of six (similar to 17%) patients <50 years and one of 45 patients (similar to 2%) <60 years in the combined cohorts. EC was the first/dual-first cancer in three pa-tients with underlying constitutional MLH1 methylation.Conclusions. A correct diagnosis at first presentation of cancer is important as it will significantly alter clinical management. Screening for constitutional MLH1 methylation is warranted in patients with early-onset EC or syn-chronous/metachronous tumors (any age) displaying MLH1 methylation.(c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/)
Sequences Sufficient for Programming Imprinted Germline DNA Methylation Defined
Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice
Long Term Transcriptional Reactivation of Epigenetically Silenced Genes in Colorectal Cancer Cells Requires DNA Hypomethylation and Histone Acetylation
Epigenetic regulation of genes involves the coordination of DNA methylation and histone modifications to maintain transcriptional status. These two features are frequently disrupted in malignancy such that critical genes succumb to inactivation. 5-aza-2′-deoxycytidine (5-aza-dC) is an agent which inhibits DNA methyltransferase, and holds great potential as a treatment for cancer, yet the extent of its effectiveness varies greatly between tumour types. Previous evidence suggests expression status after 5-aza-dC exposure cannot be explained by the DNA methylation status alone. Aim: We sought to identify chromatin changes involved with short and long term gene reactivation following 5-aza-dC exposure. Two colorectal cancer cell lines, HCT116 and SW480, were treated with 5-aza-dC and then grown in drug-free media to allow DNA re-methylation. DNA methylation and chromatin modifications were assessed with bisulfite sequencing and Chromatin Immuno-Precipitation analysis. Results: Increased H3 acetylation, H3K4 tri-methylation and loss of H3K27 tri-methylation were associated with reactivation. Hypermethylated genes that did not show increased acetylation were transiently expressed with 5-aza-dC treatment before reverting to an inactive state. Three reactivated genes, CDO1, HSPC105 and MAGEA3, were still expressed 10 days post 5-aza-dC treatment and displayed localised hypomethylation at the transcriptional start site, and also an increased enrichment of histone H3 acetylation. Conclusions: These observations suggest that hypomethylation alone is insufficient to reactivate silenced genes and that increased Histone H3 acetylation in unison with localised hypomethylation allows long term reversion of these epigenetically silenced genes. This study suggests that combined DNA methyltransferase and histone deacetylase inhibitors may aid long term reactivation of silenced genes
- …
