168 research outputs found

    Consensus Protein Design without Phylogenetic Bias

    Get PDF
    Consensus design is an appealing strategy for the stabilization of proteins. It exploits amino acid conservation in sets of homologous proteins to identify likely beneficial mutations. Nevertheless, its success depends on the phylogenetic diversity of the sequence set available. Here, we show that randomization of a single protein represents a reliable alternative source of sequence diversity that is essentially free of phylogenetic bias. A small number of functional protein sequences selected from binary-patterned libraries suffice as input for the consensus design of active enzymes that are easier to produce and substantially more stable than individual members of the starting data set. Although catalytic activity correlates less consistently with sequence conservation in these extensively randomized proteins, less extreme mutagenesis strategies might be adopted in practice to augment stability while maintaining function

    Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein

    Get PDF
    Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications

    Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species

    Get PDF
    Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures

    Installing hydrolytic activity into a completely <i>de novo </i>protein framework

    Get PDF
    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine–histidine–glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis

    Gamification elements on social live streaming service mobile applications

    Get PDF
    Social live streaming services (SLSSs), a kind of synchronous social networking service, are slowly but surely becoming a part of people’s daily lives. To keep users interested, a wide range of gamification elements are implemented on these services, increasing the user engagement and changing their behavior. This study examined 20 different SLSS mobile applications and the applied gamification elements. A literature review as well as a content analysis were used to find appropriate SLSS apps and game elements. What kind of mechanics can be found on SLSS mobile apps and how many are implemented on each system? On three of the observed apps we could identify all game elements. Chinese SLSS apps are the most gamified ones. On Ustream, no game element is implemented. The game mechanics following others as well as customization are the most often applied; capturing a moment of a stream is the least often implemented

    In vivo catalysis of a metabolically essential reaction by an antibody.

    Get PDF
    We have established a growth selection requirement for a catalytic antibody with modest chorismate mutase activity. Conversion of (-)-chorismate into prephenate is the key step in the biosynthesis of the aromatic amino acids tyrosine and phenylalanine. Strains of the yeast Saccharomyces cerevisiae containing an insertion mutation in the structural gene for the enzyme chorismate mutase (EC 5.4.99.5) require exogenous supplements of these two amino acids for efficient growth. Intracellular expression of the heterologous antibody catalyst in one such strain, identified by random mutagenesis and genetic selection, provides a substantial growth advantage under auxotrophic conditions; complementation was not observed with an unrelated esterolytic antibody. In addition to demonstrating that tailored immunoglobulin catalysts can carry out vital biochemical reactions in vivo, these experiments provide a powerful selection assay for identifying genetic changes within the antibody molecule itself that augment chemical efficiency
    corecore