9 research outputs found

    ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits

    Get PDF

    Role of ciliary dysfunction in a new model of obesity and non-alcoholic steatohepatitis: the foz/fozmice

    No full text

    Antibodies against the melanocortin-4 receptor act as inverse agonists in vitro and in vivo

    No full text
    Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus

    Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes

    No full text
    More than 100 risk loci for schizophrenia have been identified by genome-wide association studies. Here, the authors apply an integrative genomic approach to prioritize risk genes and validate GLT8D1 and CSNK2B as candidate causal genes by in vitro studies in neural stem cells
    corecore