2,055 research outputs found

    On the smallest scale for the incompressible Navier-Stokes equations

    Get PDF
    It is proven that for solutions to the two- and three-dimensional incompressible Navier-Stokes equations the minimum scale is inversely proportional to the square root of the Reynolds number based on the kinematic viscosity and the maximum of the velocity gradients. The bounds on the velocity gradients can be obtained for two-dimensional flows, but have to be assumed to be three-dimensional. Numerical results in two dimensions are given which illustrate and substantiate the features of the proof. Implications of the minimum scale result to the decay rate of the energy spectrum are discussed

    The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33

    Full text link
    Infrared Dark Clouds (IRDCs) are unique laboratories to study the initial conditions of high-mass star and star cluster formation. We present high-sensitivity and high-angular resolution IRAM PdBI observations of N2H+ (1-0) towards IRDC G035.39-00.33. It is found that G035.39-00.33 is a highly complex environment, consisting of several mildly supersonic filaments (sigma_NT/c_s ~1.5), separated in velocity by <1 km s^-1 . Where multiple spectral components are evident, moment analysis overestimates the non-thermal contribution to the line-width by a factor ~2. Large-scale velocity gradients evident in previous single-dish maps may be explained by the presence of substructure now evident in the interferometric maps. Whilst global velocity gradients are small (<0.7 km s^-1 pc^-1), there is evidence for dynamic processes on local scales (~1.5-2.5 km s^-1 pc^-1 ). Systematic trends in velocity gradient are observed towards several continuum peaks. This suggests that the kinematics are influenced by dense (and in some cases, starless) cores. These trends are interpreted as either infalling material, with accretion rates ~(7 \pm 4)x10^-5 M_sun yr^-1 , or expanding shells with momentum ~24 \pm 12 M_sun km s^-1 . These observations highlight the importance of high-sensitivity and high-spectral resolution data in disentangling the complex kinematic and physical structure of massive star forming regions.Comment: 25 pages, 23 figures, accepted for publication in MNRA

    Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds

    Get PDF
    Star formation within the Central Molecular Zone (CMZ) may be intimately linked to the orbital dynamics of the gas. Recent models suggest that star formation within the dust ridge molecular clouds (from G0.253+0.016 to Sgr B2) follows an evolutionary time sequence, triggered by tidal compression during their preceding pericentre passage. Given that these clouds are the most likely precursors to a generation of massive stars and extreme star clusters, this scenario would have profound implications for constraining the time-evolution of star formation. In this Letter, we search for the initial conditions of the protocluster clouds, focusing on the kinematics of gas situated upstream from pericentre. We observe a highly-regular corrugated velocity field in {l,vLSR}\{l,\,v_{\rm LSR}\} space, with amplitude and wavelength A=3.7±0.1A=3.7\,\pm\,0.1 kms1^{-1} and λvel,i=22.5±0.1\lambda_{\rm vel, i}=22.5\,\pm\,0.1 pc, respectively. The extremes in velocity correlate with a series of massive (104\sim10^{4}M_{\odot}) and compact (Req2R_{\rm eq}\sim2 pc), quasi-regularly spaced (8\sim8 pc), molecular clouds. The corrugation wavelength and cloud separation closely agree with the predicted Toomre (17\sim17 pc) and Jeans (6\sim6 pc) lengths, respectively. We conclude that gravitational instabilities are driving the condensation of molecular clouds within the Galactic Centre gas stream. Furthermore, we speculate these seeds are the historical analogue of the dust-ridge molecular clouds, representing the initial conditions of star and cluster formation in the CMZ

    Gas Kinematics and Excitation in the Filamentary IRDC G035.39-00.33

    Full text link
    Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at the early stages of their evolution is essential to establish the dynamical imprints of such collisions, and to infer the processes involved in their formation. We present multi-transition 13CO and C18O maps toward the IRDC G035.39-00.33, believed to be at the earliest stages of evolution. The 13CO and C18O gas is distributed in three filaments (Filaments 1, 2 and 3), where the most massive cores are preferentially found at the intersecting regions between them. The filaments have a similar kinematic structure with smooth velocity gradients of ~0.4-0.8 km s-1 pc-1. Several scenarios are proposed to explain these gradients, including cloud rotation, gas accretion along the filaments, global gravitational collapse, and unresolved sub-filament structures. These results are complemented by HCO+, HNC, H13CO+ and HN13C single-pointing data to search for gas infall signatures. The 13CO and C18O gas motions are supersonic across G035.39-00.33, with the emission showing broader linewidths toward the edges of the IRDC. This could be due to energy dissipation at the densest regions in the cloud. The average H2 densities are ~5000-7000 cm-3, with Filaments 2 and 3 being denser and more massive than Filament 1. The C18O data unveils three regions with high CO depletion factors (f_D~5-12), similar to those found in massive starless cores.Comment: 20 pages, 14 figures, 6 tables, accepted for publication in MNRA

    The consequences of feminization in breeding groups of wild fish

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.BACKGROUND: The feminization of nature by endocrine-disrupting chemicals (EDCs) is a key environmental issue affecting both terrestrial and aquatic wildlife. A crucial and as yet unanswered question is whether EDCs have adverse impacts on the sustainability of wildlife populations. There is widespread concern that intersex fish are reproductively compromised, with potential population-level consequences. However, to date, only in vitro sperm quality data are available in support of this hypothesis. OBJECTIVE: The aim of this study was to examine whether wild endocrine-disrupted fish can compete successfully in a realistic breeding scenario. METHODS: In two competitive breeding experiments using wild roach (Rutilus rutilus), we used DNA microsatellites to assign parentage and thus determine reproductive success of the adults. RESULTS: In both studies, the majority of intersex fish were able to breed, albeit with varying degrees of success. In the first study, where most intersex fish were only mildly feminized, body length was the only factor correlated with reproductive success. In the second study, which included a higher number of more severely intersex fish, reproductive performance was negatively correlated with severity of intersex. The intersex condition reduced reproductive performance by up to 76% for the most feminized individuals in this study, demonstrating a significant adverse effect of intersex on reproductive performance. CONCLUSION: Feminization of male fish is likely to be an important determinant of reproductive performance in rivers where there is a high prevalence of moderately to severely feminized males.Funding for this work was derived through the Endocrine Disruption in Catchments project, which was supported by the U.K. Department for Environment Food and Rural Affairs and the U.K. Environment Agency
    corecore