2,500 research outputs found

    Outcome Study of Physical Therapy Rehabilitation of Patients with Patellar Femoral Dysfunction

    Get PDF
    This study was conducted to assist St. Alexius Medical Center\u27s Institute of Sports Medicine in the analysis of physical therapy outcomes for patients who underwent patellofemoral surgical procedures including lateral retinacular release, vastus medialis oblique advancement, and tibial tubercle transfers. A review of data collected by the physical therapists at St. Alexius was performed and statistically analyzed to determine the efficacy of outcomes both clinically and functionally. This outcome analysis will assist current and future practice patterns by providing a basis for clinical effectiveness. The results of this study will be a useful resource for the facility as a guide to ensure quality improvement and as a tool for quantifying treatment to third party payers. Overall, satisfactory outcomes, as determined by predetermined goals, were obtained by all patients for all areas of rehabilitation. On average, knee range of motion was functional and within protocol goals with no differences noted secondary to surgical procedure or patient\u27s age. Pain was kept to a minimum and was found to have no correlation with the age of the patient or return of strength. Joint effusion was also within the protocol goals and showed no correlation with achieved range of motion. Functional assessment demonstrated satisfactory results, overall, with transfers, ambulation, and activities of daily living

    Patterns of utilization and clinical adoption of 0.35 Tesla MR-guided radiation therapy in the United States - Understanding the transition to adaptive, ultra-hypofractionated treatments

    Get PDF
    PURPOSE/OBJECTIVE: Magnetic resonance-guided radiation therapy (MRgRT) utilization is rapidly expanding worldwide, driven by advanced capabilities including continuous intrafraction visualization, automatic triggered beam delivery, and on-table adaptive replanning (oART). Our objective was to describe patterns of 0.35Tesla(T)-MRgRT (MRIdian) utilization in the United States (US) among early adopters of this novel technology. MATERIALS/METHODS: Anonymized administrative data from all US MRIdian treatment systems were extracted for patients completing treatment from 2014 to 2020. Detailed treatment information was available for all MRIdian linear accelerator (linac) systems and some cobalt systems. RESULTS: Seventeen systems at 16 centers delivered 5736 courses and 36,389 fractions (fraction details unavailable for 1223 cobalt courses), of which 21.1% were adapted. Ultra-hypofractionation (UHfx) (1-5 fractions) was used in 70.3% of all courses. At least one adaptive fraction was used for 38.5% of courses (average 1.7 adapted fractions/course), with higher oART use in UHfx dose schedules (47.7% of courses, average 1.9 adapted fractions per course). The most commonly treated organ sites were pancreas (20.7%), liver (16.5%), prostate (12.5%), breast (11.5%), and lung (9.4%). Temporal trends show a compounded annual growth rate (CAGR) of 59.6% in treatment courses delivered, with a dramatic increase in use of UHfx to 84.9% of courses in 2020 and similar increase in use of oART to 51.0% of courses. CONCLUSIONS: This is the first comprehensive study reporting patterns of utilization among early adopters of MRIdian in the US. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of adaptive radiation therapy has led to a substantial transition to ultra-hypofractionated regimens. 0.3

    High power test of a 30 GHz planar accelerator

    Get PDF
    A 30-GHz muffin-tin, traveling-wave accelerating structure consisting of 37 cells was tested at high power using the CTF2 at CERN. The structure was fabricated with conventional milling and brazing, including tuning holes at cavity roofs. No special surface preparation or treatment was done to the structure. A maximum peak power in excess of 100 MW at a pulse width of 4 ns was transported through the structure before electron bursts were initiated. A maximum accelerating gradient of 60 MV/m was achieved with a peak RF power of 40 MW at a pulse width of 8 ns

    Preliminary results of a low-frequency 3D-SAR approach for glacier volume mapping

    Full text link
    First experimental results with a low-frequency, ultra widebad (UWB) radar for estimating the height of glacier beds are illustrated. We use a 3-dimensional Time-Domain Back-Projection (TDBP) algorithm which incorporates the influence of the refractivity of ice to reconstruct the glacier bed of the Aletsch Glacier in the Swiss Alps using several CARABAS data sets. As the results indicate, the proposed method underlines the ability of low-frequency Synthetic Aperture Radar (SAR) to penetrate into glacier ice and thus, to map glacier volumes on a large scale even with only few, suboptimal data acquisitions

    Student Perceptions of a 21st Century Learning Space

    Get PDF
    Higher education institutions are increasingly building or remodeling classrooms to become flexible spaces that support learner-centered instruction. However, little is known about the actual impact of these spaces on student outcomes. Using a mixed method design, this study examined student perceptions of a flexible learning space on student learning and engagement compared to traditional classrooms. Students reported that the flexible space enhanced their learning experience by supporting classroom engagement. This study demonstrates the importance of incorporating student perceptions when planning learning spaces and suggests a need for further studies on the complex relationships among space, student learning and motivation.

    Vanishing Fe 3d orbital moments in single-crystalline magnetite

    Full text link
    We show detailed magnetic absorption spectroscopy results of an in situ cleaved high quality single crystal of magnetite. In addition the experimental setup was carefully optimized to reduce drift, self absorption, and offset phenomena as far as possible. In strong contradiction to recently published data, our observed orbital moments are nearly vanishing and the spin moments are quite close to the integer values proposed by theory. This very important issue supports the half metallic full spin polarized picture of magnetite.Comment: 7 pages, 4 figure

    Preparation, Characterization, and Electrochemical Activation of a Model [Cp*Rh] Hydride

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.8b02160.Monomeric half-sandwich rhodium hydride complexes are often proposed as intermediates in catalytic cycles, but relatively few such compounds have been isolated and studied, limiting understanding of their properties. Here, we report preparation and isolation of a monomeric rhodium(III) hydride complex bearing the pentamethylcyclopentadienyl (Cp*) and bis(diphenylphosphino)benzene (dppb) ligands. The hydride complex is formed rapidly upon addition of weak acid to a reduced precursor complex, Cp*Rh(dppb). Single-crystal X-ray diffraction data for the [Cp*Rh] hydride, which were previously unavailable for this class of compounds, provide evidence of the direct Rh–H interaction. Complementary infrared spectra show the Rh–H stretching frequency at 1986 cm−1. In contrast to results with other [Cp*Rh] complexes bearing diimine ligands, treatment of the isolated hydride with strong acid does not result in H2 evolution. Electrochemical studies reveal that the hydride complex can be reduced only at very negative potentials (ca. −2.5 V vs. ferrocenium/ferrocene), resulting in Rh–H bond cleavage and H2 generation. These results are discussed in the context of catalytic H2 generation, and development of design rules for improved catalysts bearing the [Cp*] ligand.University of Kansas Undergraduate Research AwardS10OD016360S10RR024664NSF MRI Grant CHE-162592
    • …
    corecore