582 research outputs found
Density Fluctuations in the Solar Wind Driven by Alfv\'en Wave Parametric Decay
Measurements and simulations of inertial compressive turbulence in the solar
wind are characterized by anti-correlated magnetic fluctuations parallel to the
mean field and density structures. This signature has been interpreted as
observational evidence for non-propagating pressure balanced structures (PBS),
kinetic ion acoustic waves, as well as the MHD slow-mode. Given the high
damping rates of parallel propagating compressive fluctuations, their ubiquity
in satellite observations is surprising, and suggestive of a local driving
process. One possible candidate for the generation of compressive fluctuations
in the solar wind is Alfv\'en wave parametric instability. Here we test the
parametric decay process as a source of compressive waves in the solar wind by
comparing the collisionless damping rates of compressive fluctuations with the
growth rates of the parametric decay instability daughter waves. Our results
suggest that generation of compressive waves through parametric decay is
overdamped at 1 AU, but that the presence of slow-mode like density
fluctuations is correlated with the parametric decay of Alfv\'en waves
A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows
In this article we set up a splitting variant of the JKO scheme in order to
handle gradient flows with respect to the Kantorovich-Fisher-Rao metric,
recently introduced and defined on the space of positive Radon measure with
varying masses. We perform successively a time step for the quadratic
Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao
distance. Exploiting some inf-convolution structure of the metric we show
convergence of the whole process for the standard class of energy functionals
under suitable compactness assumptions, and investigate in details the case of
internal energies. The interest is double: On the one hand we prove existence
of weak solutions for a certain class of reaction-advection-diffusion
equations, and on the other hand this process is constructive and well adapted
to available numerical solvers.Comment: Final version, to appear in SIAM SIM
IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch
The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfvén waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Δ ˜ 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints
Nonlinear theory of mirror instability near threshold
An asymptotic model based on a reductive perturbative expansion of the drift
kinetic and the Maxwell equations is used to demonstrate that, near the
instability threshold, the nonlinear dynamics of mirror modes in a magnetized
plasma with anisotropic ion temperatures involves a subcritical
bifurcation,leading to the formation of small-scale structures with amplitudes
comparable with the ambient magnetic field
A detailed analysis of a multi-agent diverse team
In an open system we can have many different kinds of agents. However, it is a challenge to decide which agents to pick when forming multi-agent teams. In some scenarios, agents coordinate by voting continuously. When forming such teams, should we focus on the diversity of the team or on the strength of each member? Can a team of diverse (and weak) agents outperform a uniform team of strong agents? We propose a new model to address these questions. Our key contributions include: (i) we show that a diverse team can overcome a uniform team and we give the necessary conditions for it to happen; (ii) we present optimal voting rules for a diverse team; (iii) we perform synthetic experiments that demonstrate that both diversity and strength contribute to the performance of a team; (iv) we show experiments that demonstrate the usefulness of our model in one of the most difficult challenges for Artificial Intelligence: Computer Go
ARTEMIS Science Objectives
NASA's two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth's magnetotail; reconnection, particle acceleration, and turbulence in the Earth's magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives
Fast Acceleration of Transrelativistic Electrons in Astrophysical Turbulence
Highly energetic, relativistic electrons are commonly present in many
astrophysical systems, from solar flares to the intra-cluster medium, as
indicated by observed electromagnetic radiation. However, open questions remain
about the mechanisms responsible for their acceleration, and possible
re-acceleration. Ubiquitous plasma turbulence is one of the possible universal
mechanisms. We study the energization of transrelativistic electrons in
turbulence using hybrid particle-in-cell, which provide a realistic model of
Alfv\'{e}nic turbulence from MHD to sub-ion scales, and test particle
simulations for electrons. We find that, depending on the electron initial
energy and turbulence strength, electrons may undergo a fast and efficient
phase of energization due to the magnetic curvature drift during the time they
are trapped in dynamic magnetic structures. In addition, electrons are
accelerated stochastically which is a slower process that yields lower maximum
energies. The combined effect of these two processes determines the overall
electron acceleration. With appropriate turbulence parameters, we find that
superthermal electrons can be accelerated up to relativistic energies. For
example, with heliospheric parameters and a relatively high turbulence level,
rapid energization to MeV energies is possible.Comment: Accepted for publication in The Astrophysical Journa
MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE
Accepted for publication in The Astrophysical Journal, March 21, 201
THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY
We present the first three-dimensional hybrid simulations of the evolution of
ion-scale current sheets, with an investigation of the role of temperature
anisotropy and associated kinetic instabilities on the growth of the tearing
instability and particle heating. We confirm the ability of the ion cyclotron
and firehose instabilities to enhance or suppress reconnection, respectively.
The simulations demonstrate the emergence of persistent three-dimensional
structures, including patchy reconnection sites and the fast growth of a
narrow-band drift-kink instability, which suppresses reconnection for thin
current sheets with weak guide fields. Potential observational signatures of
the three-dimensional evolution of solar wind current sheets are also
discussed. We conclude that kinetic instabilities, arising from non-Maxwellian
ion populations, are significant to the evolution of three-dimensional current
sheets, and two-dimensional studies of heating rates by reconnection may
therefore over-estimate the ability of thin, ion-scale current sheets to heat
the solar wind by reconnection
- …
