1,824 research outputs found

    Extensions and further applications of the nonlocal Polyakov--Nambu--Jona-Lasinio model

    Full text link
    The nonlocal Polyakov-loop-extended Nambu--Jona-Lasinio (PNJL) model is further improved by including momentum-dependent wave-function renormalization in the quark quasiparticle propagator. Both two- and three-flavor versions of this improved PNJL model are discussed, the latter with inclusion of the (nonlocal) 't Hooft-Kobayashi-Maskawa determinant interaction in order to account for the axial U(1) anomaly. Thermodynamics and phases are investigated and compared with recent lattice-QCD results.Comment: 28 pages, 11 figures, 4 tables; minor changes compared to v1; extended conclusion

    Qubit quantum-dot sensors: noise cancellation by coherent backaction, initial slips, and elliptical precession

    Full text link
    We theoretically investigate the backaction of a sensor quantum dot with strong local Coulomb repulsion on the transient dynamics of a qubit that is probed capacitively. We show that the measurement backaction induced by the noise of electron cotunneling through the sensor is surprisingly mitigated by the recently identified coherent backaction [PRB 89, 195405] arising from quantum fluctuations. This renormalization effect is missing in semiclassical stochastic fluctuator models and typically also in Born-Markov approaches, which try to avoid the calculation of the nonstationary, nonequilibrium state of the qubit plus sensor. Technically, we integrate out the current-carrying electrodes to obtain kinetic equations for the joint, nonequilibrium detector-qubit dynamics. We show that the sensor-current response, level renormalization, cotunneling, and leading non-Markovian corrections always appear together and cannot be turned off individually in an experiment or ignored theoretically. We analyze the backaction on the reduced qubit state - capturing the full non-Markovian effects imposed by the sensor quantum dot on the qubit - by applying a Liouville-space decomposition into quasistationary and rapidly decaying modes. Importantly, the sensor cannot be eliminated completely even in the simplest high-temperature, weak-measurement limit: The qubit state experiences an initial slip that persists over many qubit cycles and depends on the initial preparation of qubit plus sensor quantum dot. A quantum-dot sensor can thus not be modeled as a 'black box' without accounting for its dynamical variables. We furthermore find that the Bloch vector relaxes (T1) along an axis that is not orthogonal to the plane in which the Bloch vector dephases (T2), blurring the notions of T1 and T2 times. Finally, the precessional motion of the Bloch vector is distorted into an ellipse in the tilted dephasing plane.Comment: This is the version published in Phys. Rev.

    Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation

    Get PDF
    Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects

    Diffraction unlimited all-optical recording of electron spin resonances.

    Get PDF

    On the homomorphism order of labeled posets

    Get PDF
    Partially ordered sets labeled with k labels (k-posets) and their homomorphisms are examined. We give a representation of directed graphs by k-posets; this provides a new proof of the universality of the homomorphism order of k-posets. This universal order is a distributive lattice. We investigate some other properties, namely the infinite distributivity, the computation of infinite suprema and infima, and the complexity of certain decision problems involving the homomorphism order of k-posets. Sublattices are also examined.Comment: 14 page

    Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler

    Full text link
    The focusing properties of three aspheric lenses with numerical aperture (NA) between 0.53 and 0.68 were directly measured using an interferometrically referenced scanning knife-edge beam profiler with sub-micron resolution. The results obtained for two of the three lenses tested were in agreement with paraxial gaussian beam theory. It was also found that the highest NA aspheric lens which was designed for 830nm was not diffraction limited at 633nm. This process was automated using motorized translation stages and provides a direct method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure

    Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy.

    No full text
    We used stimulated emission depletion (STED) superresolution microscopy to analyze the nanoscale organization of 12 glial and axonal proteins at the nodes of Ranvier of teased sciatic nerve fibers. Cytoskeletal proteins of the axon (betaIV spectrin, ankyrin G) exhibit a high degree of one-dimensional longitudinal order at nodal gaps. In contrast, axonal and glial nodal adhesion molecules [neurofascin-186, neuron glial-related cell adhesion molecule (NrCAM)] can arrange in a more complex, 2D hexagonal-like lattice but still feature a ∌190-nm periodicity. Such a lattice-like organization is also found for glial actin. Sodium and potassium channels exhibit a one-dimensional periodicity, with the Nav channels appearing to have a lower degree of organization. At paranodes, both axonal proteins (betaII spectrin, Caspr) and glial proteins (neurofascin-155, ankyrin B) form periodic quasi–one-dimensional arrangements, with a high degree of interdependence between the position of the axonal and the glial proteins. The results indicate the presence of mechanisms that finely align the cytoskeleton of the axon with the one of the Schwann cells, both at paranodal junctions (with myelin loops) and at nodal gaps (with microvilli). Taken together, our observations reveal the importance of the lateral organization of proteins at the nodes of Ranvier and pave the way for deeper investigations of the molecular ultrastructural mechanisms involved in action potential propagation, the formation of the nodes, axon–glia interactions, and demyelination diseases
    • 

    corecore