750 research outputs found
PP-waves with torsion and metric-affine gravity
A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a
nonvanishing parallel spinor field; here the connection is assumed to be
Levi-Civita. We generalise this definition to metric compatible spacetimes with
torsion and describe basic properties of such spacetimes. We use our
generalised pp-waves for constructing new explicit vacuum solutions of
quadratic metric-affine gravity.Comment: 17 pages, LaTeX2
Density-matrix spectra for integrable models
The spectra which occur in numerical density-matrix renormalization group
(DMRG) calculations for quantum chains can be obtained analytically for
integrable models via corner transfer matrices. This is shown in detail for the
transverse Ising chain and the uniaxial XXZ Heisenberg model and explains in
particular their exponential character in these cases.Comment: 14 pages, 7 figures, to appear in Ann. Physi
Projective Invariance and One-Loop Effective Action in Affine-Metric Gravity Interacting with Scalar Field
We investigate the influence of the projective invariance on the
renormalization properties of the theory. One-loop counterterms are calculated
in the most general case of interaction of gravity with scalar field.Comment: 10 pages, LATE
A formal framework for a nonlocal generalization of Einstein's theory of gravitation
The analogy between electrodynamics and the translational gauge theory of
gravity is employed in this paper to develop an ansatz for a nonlocal
generalization of Einstein's theory of gravitation. Working in the linear
approximation, we show that the resulting nonlocal theory is equivalent to
general relativity with "dark matter". The nature of the predicted "dark
matter", which is the manifestation of the nonlocal character of gravity in our
model, is briefly discussed. It is demonstrated that this approach can provide
a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark
matter.Comment: 13 pages RevTex, no figures; v2: minor corrections, reference added,
matches published versio
The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space
The definition of the Einstein 3-form G_a is motivated by means of the
contracted 2nd Bianchi identity. This definition involves at first the complete
curvature 2-form. The 1-form L_a is defined via G_a = L^b \wedge #(o_b \wedge
o_a). Here # denotes the Hodge-star, o_a the coframe, and \wedge the exterior
product. The L_a is equivalent to the Einstein 3-form and represents a certain
contraction of the curvature 2-form. A variational formula of Salgado on
quadratic invariants of the L_a 1-form is discussed, generalized, and put into
proper perspective.Comment: LaTeX, 13 Pages. To appear in Gen. Rel. Gra
A generalized photon propagator
A covariant gauge independent derivation of the generalized dispersion
relation of electromagnetic waves in a medium with local and linear
constitutive law is presented. A generalized photon propagator is derived. For
Maxwell constitutive tensor, the standard light cone structure and the standard
Feynman propagator are reinstated
Torsion nonminimally coupled to the electromagnetic field and birefringence
In conventional Maxwell--Lorentz electrodynamics, the propagation of light is
influenced by the metric, not, however, by the possible presence of a torsion
T. Still the light can feel torsion if the latter is coupled nonminimally to
the electromagnetic field F by means of a supplementary Lagrangian of the type
l^2 T^2 F^2 (l = coupling constant). Recently Preuss suggested a specific
nonminimal term of this nature. We evaluate the spacetime relation of Preuss in
the background of a general O(3)-symmetric torsion field and prove by
specifying the optical metric of spacetime that this can yield birefringence in
vacuum. Moreover, we show that the nonminimally coupled homogeneous and
isotropic torsion field in a Friedmann cosmos affects the speed of light.Comment: Revtex, 12 pages, no figure
On possible skewon effects on light propagation
We start from a local and linear spacetime relation between the
electromagnetic excitation and the field strength. Then we study the generally
covariant Fresnel surfaces for light rays and light waves. The metric and the
connection of spacetime are left unspecified. Accordingly, our framework is
ideally suited for a search of possible violations of the Lorentz symmetry in
the photon sector of the extended standard model. We discuss how the skewon
part of the constitutive tensor, if suitably parametrized, influences the
Fresnel surfaces and disturbs the light cones of vacuum electrodynamics.
Conditions are specified that yield the reduction of the original quartic
Fresnel surface to the double light cone structure (birefringence) and to the
single light cone. Qualitatively, the effects of the real skewon field can be
compared to those in absorbing material media. In contrast, the imaginary
skewon field can be interpreted in terms of non-absorbing media with natural
optical activity and Faraday effects. The astrophysical data on gamma-ray
bursts are used for deriving an upper limit for the magnitude of the skewon
field.Comment: Revtex, 29 pages, 10 figures, references added, text as in the
published versio
Black Holes with Weyl Charge and Non-Riemannian Waves
A simple modification to Einstein's theory of gravity in terms of a
non-Riemannian connection is examined. A new tensor-variational approach yields
field equations that possess a covariance similar to the gauge covariance of
electromagnetism. These equations are shown to possess solutions analogous to
those found in the Einstein-Maxwell system. In particular one finds
gravi-electric and gravi-magnetic charges contributing to a spherically
symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a
source for the non-Riemannian torsion and metric gradient fields instead of the
electromagnetic field. The theory suggests that matter may be endowed with
gravitational charges that couple to gravity in a manner analogous to
electromagnetic couplings in an electromagnetic field. The nature of
gravitational coupling to spinor matter in this theory is also investigated and
a solution exhibiting a plane-symmetric gravitational metric wave coupled via
non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit
- …
