371 research outputs found
Social Networks and the Aggregation on Individual Decisions
This paper analyzes individual decisions to participate in an activity and the aggregation of those decisions when individuals gather information about the outcomes and choices of (a few) others in their social network. In this environment, aggregate participation rates are generally inefficient. Increasing the size of social networks does not necessarily increase efficiency and can lead to less efficient long-run outcomes. Both subsidies for participation and penalties for non-participation can increase participation rates, though not necessarily by the same amount. Punishing non-participation has much greater effects on participation rates than rewarding participation when current rates are very low. A program that provides youth with mentors who have participated themselves can increase participation rates, especially when those rates are low. Finally, communities plagued by the flight of successful participants will experience lower short- and long-run participation rates.
Low-frequency ionospheric sounding with Narrow Bipolar Event lightning radio emissions: regular variabilities and solar-X-ray responses
We present refinements of a method of ionospheric D-region sounding that makes opportunistic use of powerful (10<sup>9</sup>&ndash;10<sup>11</sup> W) broadband lightning radio emissions in the low-frequency (LF; 30&ndash;300 kHz) band. Such emissions are from "Narrow Bipolar Event" (NBE) lightning, and they are characterized by a narrow (10-μs), simple emission waveform. These pulses can be used to perform time-delay reflectometry (or "sounding") of the D-region underside, at an effective LF radiated power exceeding by orders-of-magnitude that from man-made sounders. We use this opportunistic sounder to retrieve instantaneous LF ionospheric-reflection height whenever a suitable lightning radio pulse from a located NBE is recorded. We show how to correct for three sources of "regular" variability, namely solar zenith angle, radio-propagation range, and radio-propagation azimuth. The residual median magnitude of the noise in reflection height, after applying the regression corrections for the three regular variabilities, is on the order of 1 km. This noise level allows us to retrieve the D-region-reflector-height variation with solar X-ray flux density for intensity levels at and above an M-1 flare. The instantaneous time response is limited by the occurrence rate of NBEs, and the noise level in the height determination is typically in the range &plusmn;1 km
NUV/Blue spectral observations of sprites in the 320-460 nm region: (2PG) Emissions
A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98
aircraft sprite observation campaign during July 1998. In this wavelength range
video rate (60 fields/sec) spectrographic observations found the NUV/blue
emissions to be predominantly N2 (2PG). The negligible level of N2+ (1NG)
present in the spectrum is confirmed by observations of a co-aligned, narrowly
filtered 427.8 nm imager and is in agreement with previous ground-based
filtered photometer observations. The synthetic spectral fit to the
observations indicates a characteristic energy of ~1.8 eV, in agreement with
our other NUV observations.Comment: 7 pages, 2 figures, 1 table, JGR Space Physics "Effects of
Thunderstorms and Lightning in the Upper Atmosphere" Special Sectio
Frequency evaluation of the doubly forbidden transition in bosonic Yb
We report an uncertainty evaluation of an optical lattice clock based on the
transition in the bosonic isotope Yb by use
of magnetically induced spectroscopy. The absolute frequency of the
transition has been determined through comparisons
with optical and microwave standards at NIST. The weighted mean of the
evaluations is (Yb)=518 294 025 309 217.8(0.9) Hz. The uncertainty
due to systematic effects has been reduced to less than 0.8 Hz, which
represents in fractional frequency.Comment: 4 pages, 3 figure -Submitted to PRA Rapid Communication
Zitterbewegung in External Magnetic Field: Classic versus Quantum Approach
We investigate variations of the Zitterbewegung frequency of electron due to
an external static and uniform magnetic field employing the expectation value
quantum approach, and compare our results with the classical model of spinning
particles. We demonstrate that these two so far compatible approaches are not
in agreement in the presence of an external uniform static magnetic field, in
which the classical approach breaks the usual symmetry of free particles and
antiparticles states, i.e. it leads to CP violation. Hence, regarding the
Zitterbewegung frequency of electron, the classical approach in the presence of
an external magnetic field is unlikely to correctly describe the spin of
electron, while the quantum approach does, as expected. We also show that the
results obtained via the expectation value are in close agreement with the
quantum approach of the Heisenberg picture derived in the literature. However,
the method we use is capable of being compared with the classical approach
regarding the spin aspects. The classical interpretation of spin produced by
the altered Zitterbewegung frequency, in the presence of an external magnetic
field, are discussed.Comment: 16 pages, no figure
Burkitt lymphoma research in East Africa : highlights from the 9th African organization for research and training in cancer conference held in Durban, South Africa in 2013
A one-day workshop on Burkitt lymphoma (BL) was held at the 9th African Organization for Research and Training in Cancer (AORTIC) conference in 2013 in Durban, South Africa. The workshop featured 15 plenary talks by delegates representing 13 institutions that either fund or implement research on BL targeting AORTIC delegates primarily interested in pediatric oncology. The main outcomes of the meeting were improved sharing of knowledge and experience about ongoing epidemiologic BL research, BL treatment in different settings, the role of cancer registries in cancer research, and opportunities for African scientists to publish in scientific journals. The idea of forming a consortium of BL to improve coordination, information sharing, accelerate discovery, dissemination, and translation of knowledge and to build capacity, while reducing redundant efforts was discussed. Here, we summarize the presentations and discussions from the workshop
Recommended from our members
Multi-objective optimization of genome-scale metabolic models: the case of ethanol production
Ethanol is among the largest fermentation product used worldwide, accounting for more than 90% of all biofuel produced in the last decade. However current production methods of ethanol are unable to meet the requirements of increasing global demand, because of low yields on glucose sources. In this work, we present an in silico multi-objective optimization and analyses of eight genome-scale metabolic networks for the overproduction of ethanol within the engineered cell. We introduce MOME (multi-objective metabolic engineering) algorithm, that models both gene knockouts and enzymes up and down regulation using the Redirector framework. In a multi-step approach, MOME tackles the multi-objective optimization of biomass and ethanol production in the engineered strain; and performs genetic design and clustering analyses on the optimization results. We find in silico E. coli Pareto optimal strains with a knockout cost of 14 characterized by an ethanol production up to 19.74mmolgDW−1h−1 (+832.88% with respect to wild-type) and biomass production of 0.02h−1 (−98.06% ). The analyses on E. coli highlighted a single knockout strategy producing 16.49mmolgDW−1h−1 (+679.29% ) ethanol, with biomass equals to 0.23h−1 (−77.45% ). We also discuss results obtained by applying MOME to metabolic models of: (i) S. aureus; (ii) S. enterica; (iii) Y. pestis; (iv) S. cerevisiae; (v) C. reinhardtii; (vi) Y. lipolytica. We finally present a set of simulations in which constrains over essential genes and minimum allowable biomass were included. A bound over the maximum allowable biomass was also added, along with other settings representing rich media compositions. In the same conditions the maximum improvement in ethanol production is +195.24%
Looking to the future of zebrafish as a model to understand the genetic basis of eye disease
In this brief commentary, we provide some of our thoughts and opinions on the current and future use of zebrafish to model human eye disease, dissect pathological progression and advance in our understanding of the genetic bases of microphthalmia, andophthalmia and coloboma (MAC) in humans. We provide some background on eye formation in fish and conservation and divergence across vertebrates in this process, discuss different approaches for manipulating gene function and speculate on future research areas where we think research using fish may prove to be particularly effective
- …
