520 research outputs found

    Bioenergetic evaluation of a whole-lake nanosilver addition on Yellow Perch (Perca flavescens)

    Get PDF
    Nanosilver (nAg) is an antibacterial and antimicrobial agent. Its wide use in hundreds of commercial products and industrial applications suggests a high potential for release into the environment. Previous research indicates that nAg induces different physiological responses in aquatic organisms, with different toxicological thresholds than ionic silver, indicating that nAg may require a separate regulatory framework for policy on environmental release. As part of a collaborative nAg addition study (environmental concentrations = 1-15μg/L), conducted at the IISD-Experimental Lakes Area, I evaluated changes in Yellow Perch (Perca flavescens) bioenergetics at the individual-level, and extrapolated modelled rates to the population-level for comparison before, during, and after whole-lake nAg addition. Condition and abundance of predatory Northern Pike (Esox lucius) were also examined. Results were compared to a nearby unmanipulated reference lake monitored over the same period. Perch consumption and total metabolism decreased during and after nAg addition in the experimental lake. Activity levels became increasingly variable with nAg addition, but decreased on average. Growth rates and conversion efficiency appeared unaffected in both lakes. Abundance and condition of perch remained constant over the study. By contrast, survivability of pike increased after nAg addition ceased, however, condition did not improve. Gross consumption of zooplankton and benthic invertebrates by perch declined during and after nAg addition. This study evaluated fish effects in relation to the rest of the ecosystem – achievable only through whole-lake experimentation. Based on these results, nAg appears to have had significant adverse impacts on fish during the two years of exposure

    The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD

    Get PDF
    Objective The balance between coronary endothelial dysfunction and repair is influenced by many protective and deleterious factors circulating in the blood. We studied the relationship between oxidised low-density lipoprotein (oxLDL), circulating endothelial progenitor cells (EPCs) and coronary endothelial function in patients with stable coronary heart disease (CHD). Methods 33 patients with stable CHD were studied. Plasma oxLDL was measured using ELISA, coronary endothelial function was assessed using intracoronary acetylcholine infusion and EPCs were quantified using flow cytometry for CD34+/KDR+ cells. Results Plasma oxLDL correlated positively with the number of EPCs in the blood (r=0.46, p=0.02). There was a positive correlation between the number of circulating EPCs and coronary endothelial function (r=0.42, p=0.04). There was no significant correlation between oxLDL and coronary endothelial function. Conclusions Plasma levels of oxLDL are associated with increased circulating EPCs in the blood of patients with CHD, which may reflect a host-repair response to endothelial injury. Patients with stable CHD had a high prevalence of coronary endothelial dysfunction, which was associated with lower numbers of circulating EPCs, suggesting a mechanistic link between endothelial dysfunction and the pathogenesis of atherosclerosis

    Fabrication of functionally graded 3A/5A zeolites by electrophoretic deposition

    Get PDF
    Functionally graded zeolites of molecular sieve type 3A and 5A are deposited by electrophoretic deposition (EPD) from acetone suspension with 8% volume concentration of n-butylamine as particle charging agent. The EPD characteristics of both 3A and 5A suspensions are studied. Functionally graded zeolite 3A/5A deposits are obtained at 200 V DC. Energy dispersive X-ray dispersion (EDX) analysis results confirm the graded structure. The deposited zeolites are also analysed by scanning electron microscopy (SEM). The factors influencing the deposition process are discussed

    Safeguard: Progress and Test Results for a Reliable Independent On-Board Safety Net for UAS

    Get PDF
    As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without compromising safety or disrupting traditional airspace operations. For small UAS, several operational rules have been established; e.g., do not operate beyond visual line-of-sight, do not fly within five miles of a commercial airport, do not fly above 400 feet above ground level. Enforcing these rules is challenging for UAS, as evidenced by the number of incident reports received by the Federal Aviation Administration (FAA). This paper reviews the development of an onboard system - Safeguard - designed to monitor and enforce conformance to a set of operational rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, and altitude constraints). Unlike typical geofencing or geo-limitation functions, Safeguard operates independently of the off-the-shelf UAS autopilot and is designed in a way that can be realized by a small set of verifiable functions to simplify compliance with existing standards for safety-critical systems (e.g. for spacecraft and manned commercial transportation aircraft systems). A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what can be provided by the Global Positioning System (GPS). This paper summarizes the progress and test results for Safeguard research and development since presentation of the design concept at the 35th Digital Avionics Systems Conference (DASC '16). Significant accomplishments include completion of software verification and validation in accordance with NASA standards for spacecraft systems (to Class B), development of improved hardware prototypes, development of a simulation platform that allows for hardware-in-the-loop testing and fast-time Monte Carlo evaluations, and flight testing on multiple air vehicles. Integration testing with NASA's UAS Traffic Management (UTM) service-oriented architecture was also demonstrated

    UAS Autonomous Hazard Mitigation through Assured Compliance with Conformance Criteria

    Get PDF
    The behavior of a drone depends on the integrity of the data it uses and the reliability of the avionics systems that process that data to affect the operation of the aircraft. Commercial unmanned aircraft systems frequently rely on commercial-off-the-shelf and open source avionics components and data sources whose reliability and integrity are not easily assured. To mitigate failure events for aircraft that do not comply with conventional aviation safety standards, operational limitations are typically prescribed by regulators. Part 107 of the Federal Aviation Regulations serves as a good example of operational limitations that mitigate risk for small unmanned aircraft systems. These limitations, however, restrict growth possibilities for the industry. Any reasonable path toward achieving routine operation of all types of drones will have to address the need for assurance of avionics systems, especially their software. This paper discusses the possibility of strategically using assured systems as a stepping stone to routine operation of drones. A specimen system for assured geofencing, called Safeguard, is described as an example of such a stepping stone
    • …
    corecore