231 research outputs found

    An overview of conservative treatment options for diabetic Charcot foot neuroarthropathy

    Get PDF
    Conservative management of Charcot foot neuroarthropathy remains efficacious for certain clinical scenarios. Treatment of the patient should take into account the stage of the Charcot neuroarthopathy, site(s) of involvement, presence or absence of ulceration, presence or absence of infection, overall medical status, and level of compliance. The authors present an overview of evidence-based non-operative treatment for diabetic Charcot neuroarthropathy with an emphasis on the most recent developments in therapy

    Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes

    Get PDF
    The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during hypertrophic stimulation

    Restricted Morphological and Behavioral Abnormalities following Ablation of β-Actin in the Brain

    Get PDF
    The local translation of β-actin is one mechanism proposed to regulate spatially-restricted actin polymerization crucial for nearly all aspects of neuronal development and function. However, the physiological significance of localized β-actin translation in neurons has not yet been demonstrated in vivo. To investigate the role of β-actin in the mammalian central nervous system (CNS), we characterized brain structure and function in a CNS-specific β-actin knock-out mouse (CNS-ActbKO). β-actin was rapidly ablated in the embryonic mouse brain, but total actin levels were maintained through upregulation of other actin isoforms during development. CNS-ActbKO mice exhibited partial perinatal lethality while survivors presented with surprisingly restricted histological abnormalities localized to the hippocampus and cerebellum. These tissue morphology defects correlated with profound hyperactivity as well as cognitive and maternal behavior impairments. Finally, we also identified localized defects in axonal crossing of the corpus callosum in CNS-ActbKO mice. These restricted defects occurred despite the fact that primary neurons lacking β-actin in culture were morphologically normal. Altogether, we identified novel roles for β-actin in promoting complex CNS tissue architecture while also demonstrating that distinct functions for the ubiquitously expressed β-actin are surprisingly restricted in vivo

    Impaction bone grafting of the acetabulum at hip revision using a mix of bone chips and a biphasic porous ceramic bone graft substitute: Good outcome in 43 patients followed for a mean of 2 years

    Get PDF
    Background and purpose One of the greatest problems of revision hip arthroplasty is dealing with lost bone stock. Good results have been obtained with impaction grafting of allograft bone. However, there have been problems of infection, reproducibility, antigenicity, stability, availability of bone, and cost. Thus, alternatives to allograft have been sought. BoneSave is a biphasic porous ceramic specifically designed for use in impaction grafting. BoneSave is 80% tricalcium phosphate and 20% hydroxyapatite. Previous in vitro and in vivo studies have yielded good results using mixtures of allograft and BoneSave, when compared with allograft alone. This study is the first reported human clinical trial of BoneSave in impaction grafting

    β-Actin and γ-Actin Are Each Dispensable for Auditory Hair Cell Development But Required for Stereocilia Maintenance

    Get PDF
    Hair cell stereocilia structure depends on actin filaments composed of cytoplasmic β-actin and γ-actin isoforms. Mutations in either gene can lead to progressive hearing loss in humans. Since β-actin and γ-actin isoforms are 99% identical at the protein level, it is unclear whether each isoform has distinct cellular roles. Here, we compared the functions of β-actin and γ-actin in stereocilia formation and maintenance by generating mice conditionally knocked out for Actb or Actg1 in hair cells. We found that, although cytoplasmic actin is necessary, neither β-actin nor γ-actin is required for normal stereocilia development or auditory function in young animals. However, aging mice with β-actin– or γ-actin–deficient hair cells develop different patterns of progressive hearing loss and distinct pathogenic changes in stereocilia morphology, despite colocalization of the actin isoforms. These results demonstrate overlapping developmental roles but unique post-developmental functions for β-actin and γ-actin in maintaining hair cell stereocilia

    Characterization of Aerosol Deposited Cesium Lead Tribromide Perovskite Films on Interdigited ITO Electrodes

    Get PDF
    Aerosol deposition (AD) is a promising additive manufacturing method to fabricate low-cost, scalable films at room temperature, but has not been considered for semiconductor processing, so far. The successful preparation of cesium lead tribromide (CsPbBr) perovskite films on interdigitated indium tin oxide (ITO) electrodes by means of AD is reported here. The – µm thick layers are dense and have good adhesion to the substrate. The orthorhombic Pnma crystal structure of the precursor powder was retained during the deposition process with no signs of defect formation. The formation of electronic defects by photoluminescence spectroscopy is investigated and found slightly increased carrier recombination from defect sites for AD films compared to the powder. A nonuniform defect distribution across the layer, presumably induced by the impact of the semiconducting grains on the hard substrate surface, is revealed. The opto-electronic properties of AD processed semiconducting films is further tested by electrical measurements and confirmed good semiconducting properties and high responsivity for the films. These results demonstrate that AD processing of metal halide perovskites is possible for opto-electronic device manufacturing on D surfaces. It is believed that this work paves the way for the fabrication of previously unimaginable opto-electronic devices by additive manufacturing
    corecore