660 research outputs found

    A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems - insights from 3D virtual human atria and torso

    Get PDF
    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms

    Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea

    Get PDF
    Piglet neonatal diarrhoea is an important issue in modern pig production and is linked to increased mortality and poor growth rates, affecting long-term pig health, increasing use of medication and cost of production. Saccharomyces cerevisiae var. boulardii (SB) is a probiotic yeast with documented clinical efficacy in the prevention and treatment of diarrhoeal diseases in humans. The objectives of the current study were to evaluate the effect of SB on occurrence and severity of neonatal diarrhoea in piglets, mortality and growth rate. Forty-six litters (606 piglets) were randomly allocated to a control or SB treatment (n=23 per treatment). Within 24 h of farrowing, piglets assigned to the SB treatment received a single oral dose of a paste containing 3.3×109 CFU of SB CNCM I-1079. Piglets from the control litters received a placebo paste. Piglet weight, mortality and diarrhoea were recorded up to day 7 of age. It was shown that numbers of diarrhoea days were significantly correlated with increased mortality rate and reduced weight gain (P<0.05). SB treatment had no effect on growth or mortality in diarrhoeic litters. However, SB-supplemented litters had significantly lower faecal scores, indicating firmer faeces (P<0.01) and fewer numbers of diarrhoeic days (P<0.01) during the 1st week of life. Reduction in the number of diarrhoeic litters compared with the control group was observed following the probiotic administration (P<0.05). These results highlight the detrimental effects of neonatal diarrhoea on pre-weaning performance and suggest that SB, by reducing diarrhoea duration and severity, has the potential of improving enteric health in the early stages of life in pigs

    Inducing Ito,f and phase 1 repolarization of the cardiac action potential with a Kv4.3/KChIP2.1 bicistronic transgene

    Get PDF
    The fast transient outward potassium current (I(to,f)) plays a key role in phase 1 repolarization of the human cardiac action potential (AP) and its reduction in heart failure (HF) contributes to the loss of contractility. Therefore, restoring I(to,f) might be beneficial for treating HF. The coding sequence of a P2A peptide was cloned, in frame, between Kv4.3 and KChIP2.1 genes and ribosomal skipping was confirmed by Western blotting. Typical I(to,f) properties with slowed inactivation and accelerated recovery from inactivation due to the association of KChIP2.1 with Kv4.3 was seen in transfected HEK293 cells. Both bicistronic components trafficked to the plasmamembrane and in adenovirus transduced rabbit cardiomyocytes both t-tubular and sarcolemmal construct labelling appeared. The resulting current was similar to I(to,f) seen in human ventricular cardiomyocytes and was 50% blocked at ~0.8 mmol/l 4-aminopyridine and increased ~30% by 5 μmol/l NS5806 (an I(to,f) agonist). Variation in the density of the expressed I(to,f), in rabbit cardiomyocytes recapitulated typical species-dependent variations in AP morphology. Simultaneous voltage recording and intracellular Ca(2+) imaging showed that modification of phase 1 to a non-failing human phenotype improved the rate of rise and magnitude of the Ca(2+) transient. I(to,f) expression also reduced AP triangulation but did not affect I(Ca,L) and I(Na) magnitudes. This raises the possibility for a new gene-based therapeutic approach to HF based on selective phase 1 modification

    Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells

    Get PDF
    We report a method of fabricating a high work function, solution processable vanadium oxide (V2Ox(sol)) hole-extracting layer. The atmospheric processing conditions of film preparation have a critical influence on the electronic structure and stoichiometry of the V2Ox(sol), with a direct impact on organic photovoltaic (OPV) cell performance. Combined Kelvin probe (KP) and ultraviolet photoemission spectroscopy (UPS) measurements reveal a high work function, n-type character for the thin films, analogous to previously reported thermally evaporated transition metal oxides. Additional states within the band gap of V2Ox(sol) are observed in the UPS spectra and are demonstrated using X-ray photoelectron spectroscopy (XPS) to be due to the substoichiometric nature of V2Ox(sol). The optimized V2Ox(sol) layer performance is compared directly to bare indium–tin oxide (ITO), poly(ethyleneoxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thermally evaporated molybdenum oxide (MoOx) interfaces in both small molecule/fullerene and polymer/fullerene structures. OPV cells incorporating V2Ox(sol) are reported to achieve favorable initial cell performance and cell stability attributes

    Arrhythmogenic late Ca2+sparks in failing heart cells and their control by action potential configuration

    Get PDF
    Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca2+ measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca2+ release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca2+ release events (“late” Ca2+ sparks) during phase 2–3 of the action potential. These late Ca2+ sparks prolong the Ca2+ transient that activates contraction and can trigger propagating microscopic Ca2+ ripples, larger macroscopic Ca2+ waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca2+ sparks and their (subsequent) spatiotemporal summation into Ca2+ ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca2+ sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation–contraction coupling, increased Ca2+ transient amplitude, and suppressed late Ca2+ sparks. Therapeutic control of late Ca2+ spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death

    Buffer gas cooling and trapping of atoms with small magnetic moments

    Full text link
    Buffer gas cooling was extended to trap atoms with small magnetic moment (mu). For mu greater than or equal to 3mu_B, 1e12 atoms were buffer gas cooled, trapped, and thermally isolated in ultra high vacuum with roughly unit efficiency. For mu < 3mu_B, the fraction of atoms remaining after full thermal isolation was limited by two processes: wind from the rapid removal of the buffer gas and desorbing helium films. In our current apparatus we trap atoms with mu greater than or equal to 1.1mu_B, and thermally isolate atoms with mu greater than or equal to 2mu_B. Extrapolation of our results combined with simulations of the loss processes indicate that it is possible to trap and evaporatively cool mu = 1mu_B atoms using buffer gas cooling.Comment: 17 pages, 4 figure

    A new species of Garjainia Ochev, 1958 (diapsida: Archosauriformes: Erythrosuchidae) from the early triassic of South Africa

    Get PDF
    A new species of the erythrosuchid archosauriform reptile Garjainia Ochev, 1958 is described on the basis of disarticulated but abundant and well-preserved cranial and postcranial material from the late Early Triassic (late Olenekian) Subzone A of the Cynognathus Assemblage Zone of the Burgersdorp Formation (Beaufort Group) of the Karoo Basin of South Africa. The new species, G. madiba, differs from its unique congener, G. prima from the late Olenekian of European Russia, most notably in having large bony bosses on the lateral surfaces of the jugals and postorbitals. The new species also has more teeth and a proportionately longer postacetabular process of the ilium than G. prima. Analysis of G. madiba bone histology reveals thick compact cortices comprised of highly vascularized, rapidly forming fibro-lamellar bone tissue, similar to Erythrosuchus africanus from Subzone B of the Cynognathus Assemblage Zone. The most notable differences between the two taxa are the predominance of a radiating vascular network and presence of annuli in the limb bones of G. madiba. These features indicate rapid growth rates, consistent with data for many other Triassic archosauriforms, but also a high degree of developmental plasticity as growth remained flexible. The diagnoses of Garjainia and of Erythrosuchidae are addressed and revised. Garjainia madiba is the geologically oldest erythrosuchid known from the Southern Hemisphere, and demonstrates that erythrosuchids achieved a cosmopolitan biogeographical distribution by the end of the Early Triassic, within five million years of the end-Permian mass extinction event. It provides new insights into the diversity of the Subzone A vertebrate assemblage, which partially fills a major gap between classic 'faunal' assemblages from the older Lystrosaurus Assemblage Zone (earliest Triassic) and the younger Subzone B of the Cynognathus Assemblage Zone (early Middle Triassic)
    corecore