90 research outputs found

    Chemical modification of poly(p-phenylene) for use in ablative compositions

    Get PDF
    Development of ablative materials based on modification of polyphenylene compounds is discussed. Chemical and physical properties are analyzed for application as heat resistant materials. Synthesis of linear polyphenylenes is described. Effects of exposure to oxyacetylene flame and composition of resultant char layer are presented

    Distribution functions in percolation problems

    Get PDF
    Percolation clusters are random fractals whose geometrical and transport properties can be characterized with the help of probability distribution functions. Using renormalized field theory, we determine the asymptotic form of various of such distribution functions in the limits where certain scaling variables become small or large. Our study includes the pair-connection probability, the distributions of the fractal masses of the backbone, the red bonds and the shortest, the longest and the average self-avoiding walk between any two points on a cluster, as well as the distribution of the total resistance in the random resistor network. Our analysis draws solely on general, structural features of the underlying diagrammatic perturbation theory, and hence our main results are valid to arbitrary loop order.Comment: 15 pages, 1 figur

    Electron Spin Resonance of SrCu2(BO3)2 at High Magnetic Field

    Full text link
    We calculate the electron spin resonance (ESR) spectra of the quasi-two-dimensional dimer spin liquid SrCu2(BO3)2 as a function of magnetic field B. Using the standard Lanczos method, we solve a Shastry-Sutherland Hamiltonian with additional Dzyaloshinsky-Moriya (DM) terms which are crucial to explain different qualitative aspects of the ESR spectra. In particular, a nearest-neighbor DM interaction with a non-zero D_z component is required to explain the low frequency ESR lines for B || c. This suggests that crystal symmetry is lowered at low temperatures due to a structural phase transition.Comment: 4 pages, 4 b&w figure

    Symmetry Decomposition of Potentials with Channels

    Full text link
    We discuss the symmetry decomposition of the average density of states for the two dimensional potential V=x2y2V=x^2y^2 and its three dimensional generalisation V=x2y2+y2z2+z2x2V=x^2y^2+y^2z^2+z^2x^2. In both problems, the energetically accessible phase space is non-compact due to the existence of infinite channels along the axes. It is known that in two dimensions the phase space volume is infinite in these channels thus yielding non-standard forms for the average density of states. Here we show that the channels also result in the symmetry decomposition having a much stronger effect than in potentials without channels, leading to terms which are essentially leading order. We verify these results numerically and also observe a peculiar numerical effect which we associate with the channels. In three dimensions, the volume of phase space is finite and the symmetry decomposition follows more closely that for generic potentials --- however there are still non-generic effects related to some of the group elements

    Equilibrium counterfactuals

    Get PDF
    We incorporate structural modellers into the economy they model. Using traditional moment-matching, they treat policy changes as zero probability (or exogenous) ”counterfactuals.” Bias occurs since real-world agents understand policy changes are positive probability events guided by modellers. Downward, upward, or sign bias occurs. Bias is illustrated by calibrating the Leland model to the 2017 tax cut. The traditional identifying assumption, constant moment partial derivative sign, is incorrect with policy optimization. The correct assumption is constant moment total derivative sign accounting for estimation-policy feedback. Model agent expectations can be updated iteratively until policy advice converges to agent expectations, with bias vanishing

    Fokker-Planck description of the transfer matrix limiting distribution in the scattering approach to quantum transport

    Full text link
    The scattering approach to quantum transport through a disordered quasi-one-dimensional conductor in the insulating regime is discussed in terms of its transfer matrix \bbox{T}. A model of NN one-dimensional wires which are coupled by random hopping matrix elements is compared with the transfer matrix model of Mello and Tomsovic. We derive and discuss the complete Fokker-Planck equation which describes the evolution of the probability distribution of \bbox{TT}^{\dagger} with system length in the insulating regime. It is demonstrated that the eigenvalues of \ln\bbox{TT}^{\dagger} have a multivariate Gaussian limiting probability distribution. The parameters of the distribution are expressed in terms of averages over the stationary distribution of the eigenvectors of \bbox{TT}^{\dagger}. We compare the general form of the limiting distribution with results of random matrix theory and the Dorokhov-Mello-Pereyra-Kumar equation.Comment: 25 pages, revtex, no figure

    A universal graph description for one-dimensional exchange models

    Full text link
    We demonstrate that a large class of one-dimensional quantum and classical exchange models can be described by the same type of graphs, namely Cayley graphs of the permutation group. Their well-studied spectral properties allow us to derive crucial information about those models of fundamental importance in both classical and quantum physics, and to completely characterize their algebraic structure. Notably, we prove that the spectral gap can be obtained in polynomial computational time, which has strong implications in the context of adiabatic quantum computing with quantum spin-chains. This quantity also characterizes the rate to stationarity of some important classical random processes such as interchange and exclusion processes. Reciprocally, we use results derived from the celebrated Bethe ansatz to obtain original mathematical results about these graphs in the unweighted case. We also discuss extensions of this unifying framework to other systems, such as asymmetric exclusion processes -- a paradigmatic model in non-equilibrium physics, or the more exotic non-Hermitian quantum systems
    corecore