1,482 research outputs found
Aircraft noise propagation
Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources
Diffraction of sound by nearly rigid barriers
The diffraction of sound by barriers with surfaces of large, but finite, acoustic impedance was analyzed. Idealized source-barrier-receiver configurations in which the barriers may be considered as semi-infinite wedges are discussed. Particular attention is given to situations in which the source and receiver are at large distances from the tip of the wedge. The expression for the acoustic pressure in this limiting case is compared with the results of Pierce's analysis of diffraction by a rigid wedge. An expression for the insertion loss of a finite impedance barrier is compared with insertion loss formulas which are used extensively in selecting or designing barriers for noise control
Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom
The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada
A glossary for the social epidemiology of work organization. Part 3: terms from labour markets
This is part 3 of a three-part glossary on the
social epidemiology of work organisation. The
first two parts deal with the social psychology
of work and with organisations. This concluding
part presents concepts related to labour markets.
These concepts are drawn from economics, business
and sociology. They relate both to traditional
interests in these disciplines and to contemporary
ideas on post-industrialisation and globalisation,
particularly the growth of employment in service
industries, the development of a 24-h economy,
increased participation of the female labour force
and the perceived needs of employers in emerging
high-tech economies.These changes are of
particular interest because they are linked to
increasing inequality in earnings and changes in
social relationships in employment. These concepts
have the potential to elucidate the pathways
through which health is affected by conditions of
work as an underlying cause
A glossary for the social epidemiology of work organisation: Part 1, Terms from social psychology
Applications of acoustics in the measurement of coal slab thickness
The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described
Scheduling with partial orders and a causal model
In an ongoing project at Honeywell SRC, we are constructing a prototype scheduling system for a NASA domain using the 'Time Map Manager' (TMM). The TMM representations are flexible enough to permit the representation of precedence constraints, metric constraints between activities, and constraints relative to a variety of references (e.g., Mission Elapsed Time vs. Mission Day). The TMM also supports a simple form of causal reasoning (projection), dynamic database updates, and monitoring specified database properties as changes occur over time. The greatest apparent advantage to using the TMM is the flexibility added to the scheduling process: schedules are constructed by a process of 'iterative refinement,' in which scheduling decisions correspond to constraining an activity either with respect to another activity or with respect to one time line. The schedule becomes more detailed as activities and constraints are added. Undoing a scheduling decision means removing a constraint, not removing an activity from a specified place on the time line. For example, we can move an activity around on the time line by deleting constraints and adding new ones
Relativistic magnetohydrodynamics in one dimension
We derive a number of solution for one-dimensional dynamics of relativistic
magnetized plasma that can be used as benchmark estimates in relativistic
hydrodynamic and magnetohydrodynamic numerical codes.
First, we analyze the properties of simple waves of fast modes propagating
orthogonally to the magnetic field in relativistically hot plasma. The magnetic
and kinetic pressures obey different equations of state, so that the system
behaves as a mixture of gases with different polytropic indices. We find the
self-similar solutions for the expansion of hot strongly magnetized plasma into
vacuum.
Second, we derive linear hodograph and Darboux equations for the relativistic
Khalatnikov potential, which describe arbitrary one-dimensional isentropic
relativistic motion of cold magnetized plasma and find their general and
particular solutions. The obtained hodograph and Darboux equations are very
powerful: system of highly non-linear, relativistic, time dependent equations
describing arbitrary (not necessarily self-similar) dynamics of highly
magnetized plasma reduces to a single linear differential equation.Comment: accepted by Phys. Rev.
Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets
Transiting exoplanets in multi-planet systems have non-Keplerian orbits which
can cause the times and durations of transits to vary. The theory and
observations of transit timing variations (TTV) and transit duration variations
(TDV) are reviewed. Since the last review, the Kepler spacecraft has detected
several hundred perturbed planets. In a few cases, these data have been used to
discover additional planets, similar to the historical discovery of Neptune in
our own Solar System. However, the more impactful aspect of TTV and TDV studies
has been characterization of planetary systems in which multiple planets
transit. After addressing the equations of motion and parameter scalings, the
main dynamical mechanisms for TTV and TDV are described, with citations to the
observational literature for real examples. We describe parameter constraints,
particularly the origin of the mass/eccentricity degeneracy and how it is
overcome by the high-frequency component of the signal. On the observational
side, derivation of timing precision and introduction to the timing diagram are
given. Science results are reviewed, with an emphasis on mass measurements of
transiting sub-Neptunes and super-Earths, from which bulk compositions may be
inferred.Comment: Revised version. Invited review submitted to 'Handbook of
Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works,
Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at
https://github.com/ericagol/TTV_revie
Wavelength-Scale Imaging of Trapped Ions using a Phase Fresnel lens
A microfabricated phase Fresnel lens was used to image ytterbium ions trapped
in a radio frequency Paul trap. The ions were laser cooled close to the Doppler
limit on the 369.5 nm transition, reducing the ion motion so that each ion
formed a near point source. By detecting the ion fluorescence on the same
transition, near diffraction limited imaging with spot sizes of below 440 nm
(FWHM) was achieved. This is the first demonstration of imaging trapped ions
with a resolution on the order of the transition wavelength.Comment: 8 pages, 3 figure
- …
