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Chapter 1

INTRODUCTION

During the period June 1974 to the present, research
relative to the understanding and alleviation of aircraft noise
has been carried out by the investigators with grant support
from the National Aeronautics and Space Administration. This
report summarizes the principal results from this research.

Among the activities during the grant period were lab-
oratory experiments and theoretical studies on the diffraction
of sound by surfaces with the intention of providing basic
information relevant to the understanding of the acoustical
implications of the engine over wing configuration. That the
presence of the wing below the engine may partially shield
listeners on the ground from engine noise during flyovers has

been the topic of a number of previous reports and papersl'5

6, by

» by Conticelli, Di Blasi
9

and has been the subject of investigation by Hellstrom
von Glahn, Goodykoontz and Wagner7
and O'Keefes, by Jeffery and Holbeche”, and by Sears.10 A
principal objective is the attainment of a rational method

for quantitatively estimating just how much noise reduction

would be achieved by a given design. Such a method would




serve as a guide in the design of future EOW aircraft and
would enable one to make quantitative comparisons of alterna-
tive designs. '

In order to gain some quantitative insight into the nature
of soun§ diffraction by wings and to provide a data base for
the assessment of various theoretical approaches to the over-
all problem,'a series of experiments were conducted at NASA
Langley Research Center during the summer of 1976. These were
carried out by Allan D. Pierce and Robin Vidimos in cbllabora;
tion with John S. Priesser and other NASA personnel; the
reduction of the data was carried out under the direction of
W. James Hadden, Jr. In Chapter 2, a summary is given of the
nature of these experiments and of the results.

One of the theoretical problems presented by the overall
topic of aircraft engine noise diffraction by wings is that
the source of the sound is not a large number of wavelengths
away from the diffracting surface (although in cases of
interest the listener is). Virtually all existing computa-
tional techniques for sound diffraction by bodies are based
on the assumption that both distances are large, so some
analytical development was necessary to revise existing
theories such that they would be amenable to rapid computation
and would give quantitative insight for cases corresponding
to the topic of wing shkielding of engine noise. The details

of this analytical study are given in Chapter 3.



Another topic considered during the period of the grant
was the effect of variable ground impedance on aircraft noise
propagation. A pertinent question is to what extent the sound
received on the ground is characteristic of the local impedance
near the listener and to what extent the impedance at distant
points affects the local reception. Chapter 3, prepared by
Dr. Hadden, gives a theory for the scattering of spherical
waves by a rectangular area whose acoustic impedance differs
from that of the surrounding plane. Results of experiments
(performed during summer 1975 at NASA Langley Research Center
by W. James Hadden, Jr., Robin A. Vidimos, and Philip Sencil)
concerning reflection from rectangular patches are also
described in Chapter 4. &

A topic related to both the variable ground impedance
problem and that of the diffraction of noise by wings is that
of the effects of finite surface impedance on diffraction.
Chapter 5 is comprised of a paper by the authors written
during the grant period which summarizes the principal results
of an analytical study concerned with this topic.

Chapter 6 gives a theory developed during the grant
period for the diffraction of sound from a point source by
a thin rigid screen in the absence of ambient flow. The work
described there is a simple extension of work reported by
S. Candel on the plane wave diffraction problem. (See Chapter
6 for a listing of relevant references.) Analysis given here

shows that a simple transformation will reduce the point source



problem in the presence of ambient flow to one in which there

is no flow. The solution so derived should allow some insight

into the influence of forward motion effects on aircraft

noise diffraction by wings.



-3
.

10.

REFERENCES

M. Reshotko, W. A, Olsen and R. G. Dorsch, "Preliminary
Noise Tests of the Engine-over-the-Wing Concept. I: 30°-
60° Flap Position," NASA-TM-X-68032, March 1972.

M. Reshotko, W. A, Olsen and R. G. Doxsch, '"Preliminary
Noise Tests of the Engine-over-the-Wing Concept. II: 10°-
20° Flap Position,' NASA-TM-X-68104, June 1972.

R. G. Dorsch and M. Reshotko, "EBF Noise Tests with Bngine
Under-the-Wing and Over-the-Wing Configurations,'" NASA
SP-320, 1973, pp. 455-473.

D. Chestnutt, D. J. Maglieri, and R. E. Hayden, "Flap
Noise Generation and Control,'" NASA SP-320 (1973), pp.
413-426.

R. G. Dorsch, P. L. Lasagna, D. J. Maglieri and W. A,
Olsen, "Flap Noise," NASA SP-311 (1972), pp. 259-290.

G. Hellstrom, "Noise Shielding Aircraft Configurations,
Comparison between Predicted and Experimental Results,"
ICAS paper 74-58, 1974,

U. von Glann, Goodykoontz and J. Wagner, '"Nozzle Geometry
and Forward Velocity Effects on Noise for CTOL Engine-
over-the-Wing Concept,'" NASA-TM-X-71453, November 1973,
N73-33742.

V. M. Conticelli, A. Di Blasi and J. V. O‘Keefe, "Noise
Shielding Effects for Engine-over-the-Wing Installations,"
AIAA paper 75-474, 1975.

R. W. Jeffery and T. A. Holbeche, "An Experimental
Investigation of Noise-Shielding Effects for a Delta-
winged Aircraft in Flight, Wind Tunnel and Anechoic
Room,' AIAA paper 75-513, 1975.

F. H. Sears, "The Acoustic Shielding of Noise by a Jet
Wing," M.S. Thesis, MIT (1975).



Chapter 2

LABORATORY EXPERIMENTS ON SOUND DIFFRACTION

The experiments performed in connection with the study of
wing-shielding of noise were divided into three parts. In the
first experiment (Fig. 1), the obstacle used was a thin screen,
the source was an acoustically small driver through which
selected pure tones were projected, the source being located
close to the barrier. Narrow-band sound pressure levels were
measured on a circular arc far from the edge of the screen and
also at several locations clcse to the screen but well inside
its acoustic shadow. In the second experiment the previously
described barrier and receiver configuration was used, the
pure-tone source being replaced by a 1 inch diameter jet. The
third experimental configuration (Fig. 2) consisted of the
acoustic driver, a thick straight-sided barrier with a cylin-
drical cap, and receiver and arc ccntered on the junction of
tne cap and the straight side of the barrier which was nearer
to the driver.

The source-obstacle-receiver configuration for the first
experiment is sketched in Fig. 3. Narrow-band pressure levels
were recorded at the microphone positions shown. Results for
pure tone exciation of the driver at 490, 900 and 2050 Hz with
the driver in positions 2 (level with the top of the screen)

and 4 (9 inches below the top of the screen) are prescnted in
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Photograph of experimental apparatus for

third experiment.
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Figs. 4-6. The pressure levels for microphone positions 1, 7,
and 8, shown in Fig., 3, are presented in Table I. Although the
pressure levels measured at a fixed distance from the edge of
the screen show the expected trends of increased shadowing
effect on the screen as the frequency increases and as the
source height decreasgs, we strongly suspect that these data
were affected by transmission through the plywood screen. A
brief calculation indicates that the coincidence frequency for
such a panel is approximately 800 Hz. Thus, the measurements
at the lower two frequencies mentioned above may be significantly
contaminated by sound transmission through the screen.

The geometric arrangement for the second experiment is
shown in Figs. 7 and 8. The one-inch diameter jet was operated
at pressures of 2.8 and 5 psi; one-third octave band levels
were recorded at the microphone positions indicated in Fig. 7,
for center frequencies 500, 1000, 2000, and 4000 Hz. The
measured 1/3-octave band levels for the reference condition
(Fig. 7) and in the presence of the screen (Fig. 8) are com-
pared in Figs. 9-11. It should be noted that the results for
1000 Hz in Fig. 9 and for 4000 Hz in Fig. 10 have been shifted
upward by 10 dB for convenience in presentation. Similarly,
the results for 2000 Hz in Fig. 12 have been shifted downward
by 10 dB. As in the first experiment, it is likely that
transmission through the plywood screen is a contaminating
artifact of the measurements in the bands centered at 500 and

1000 Hz. The measured 1/3-octave band levels for microphone
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experiment: jet noise directivity measurements.



== - ——
—

16

o
o

o0
O

I/3 OCTAVE BAND LEVELS (dB)
~ o
O O
) |

4]
L)

.
==

,
/
/

WITH SCREEN
———e WITHOUT SCREEN

*WITH 10dB UPWARD ADJUSTMENT

Fig. 9. Measured 1/3-octave band levels at outer

frequencies shown for jet noise: jet
pressure, 2.8 psi; distance from top of
screen, 3.5 ft. (see Figs. 7 and 8).



©
O

@
e

70

60

—— .

S.1/3 OCTAVE BAND LEVELS (dB)

o

— =
B e
)

*WITH

Fig. 10.

17

N
2000 H

“ \\. 4000 Hz ¥
|
1
/
/ /
/

WITH SCREEN
= WITHOUT SCREEN
I0dB UPWARD ADJUSTMENT

Measured 1/3-octave band levels at outer
frequencies shown for jet noise; jet
pressure, 2.8 psi; distance from top of
screen, 3.5 ft. (see Figs. 7 and 8).



90

80

70

~1/3 OCTAVE BAND LEVELS (dB)

<Y

»‘ \:.N\;__
n
(@)

18

‘\‘/ 500 Hz.
’ 1000 Hz.
\

>

)

rd
-
-
-
-
-
-
Vi
v
-
P4
z
-
-
’
-
z
’
z
z

4

/

WITH SCREEN

—e=wa WITHOUT SCREEN

Fig. 11.

Measured 1/3-octave band levels at outer
frequencies shown for jet noise: jet
pressure, 5.0 psi; distance from top of
screen, 3.5 ft. (see Figs. 7 and 8).



19

90

80

70
4000 Hz.

TAVE BAND LEVELS (dB)

60

_—’

I/3 0C

4{,,_,
¢
o)

/_—‘-"
S,
———r

-

»e -

WITH SCREEN

== W|THOUT SCREEN
* WITH 10dB DOWNWARD ADJUSTMENT

Fig. 12. Measured 1/3-octave band levels at outer
frequencies shown for jet noise: jet
pressure, 5.0 psi; distance from top of
screen, 3.5 ft. (see Figs 7 and 8).



Table I. Narrow-band Pressure Levels Close to the Screen in the Acoustic Shadow of a Point Source

Frequency 490 Hz 900 Hz 2050 Hz 4050 Hz
Microphone Driver Driver Driver Driver
Location? Position Position Position Position Position Position Position Position

2 4 2 4 2 4 2 4
1 59.0 dB 65.3 dB 84.0 dB 85.3 dB 82.8 dB 83.0 dB 88.3 dB 86.3 dB
7 69.5 66.0 89.8 84.0 82.8 84.0 76.5 80.0
8 58.8 56.3 81.5 71.0 82.8 81.3 76.0 73.0

2Refer to Figure 1 for microphone positions.

0¢
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positions 1, 7, 8, and 9 are presented in Table II.

The third experiment was intended to supply information
as to the effects of a thick barrier and a curved diffracting
surface. The source-barrier-receiver geometry for this
experiment is sketched in Fig. 13. The sides of the barrier
were sheets of 1" plywood. The cap was also constructed of
1" plywood formed so as to produce a half-cylinder with a
radius of 12 inches. As in the first experiment, pure-tone
excitation was applied to an acoustically small source. The
source was located close (in terms of acoustic wavelengths) to
one side of the obstacle. Several source heights relative to
the highest point on the barrier were used. Narrow-band sound
pressure levels were measured on an arc at a fixed distance from
a point near the junction between the straight and curved por-
tions of the barrier. Additional sound level measurements
were made in a vertical plane in the acoustical shadow of the
barrier at a horizontal distance of 88 inches from the source.
The measured pressure levels for several source heights are
presented in Tables III-V. These measurements show the expected
increase of the shadowing effect with frequency and, in the
main, the expected increase of the shadowing effect with
difference between the source heights and the highest point o
the obstacle. In some cases the variation in preésure level
with angle is not a uniform decrease from the position almost
directly above the source to that well inside the shadow of

the barrier: the deviations which arise are no doubt due to
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EXPERIMENT NO. 3

90°
1

T P SATEN T E LT AT AT

. |
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Table II. One-third Octave Band Levels Close to the Screen in the Acoustic Shadow of a 1-inch Jet

Frequency 500 Hz 1000 Hz 2000 Hz 4000 Hz
Microphone Screen Screen Screen Screen Screen Screen Screen Screen
Location? Absent Prasent Absent Present Absent Present Absent Present
Pressure: 2.8 psi

1 69.8 d8  70.0 dB 74.2 dB 74.0 dB 76.0 dB  75.6 dB 74.2 dB8  74.0 dB
7 64.5 62.6 68.6 64.0 72.0 65.0 73.5 €3.F
8 62.8 60.8 65.5 60.2 70.0 60.2 72.2 59.2
9 61.0 58.2 63.0 56.0 66.0 57.8 69.5 56.5
Pressure: 5.0 psi
1 78.0 77.5 83.5 84.0 87.8 88.0 85.5 85.0
7 71.0 70.5 77.0 72.0 83.0 75.0 85.0 74.2
8 69.0  67.5 73.8 68.0 80.0 70.5 83.5 70.0
9 57.6 66.0 61.2 63.8 66.6 68.2 70.8 67.0

dRefer to Figs. 7 and 8 for microphone positions.

£l
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Table III. Narrow-band Pressure Levels for Diffraction of
Sound by a Cylindrically Capped Barrier: Source
12" Below Highest Point on Barrier.

Microphone Frequency
Locationd 490 Hz 900 Hz 2050 Hz 4050 Hz
1 64.5 dB 86.8 dB 81.5 dB 91.5 dB
2 64.0 88.0 83.5 90.3
3 59.0 82.0 79.8 82.5
4 55.5 80.3 66.3 66.8
5 52.3 68.5 60.5 66.5
7 50.5 74.5 69.5 62.0
8 39.5 71.5 58.8 64.5
9 51.5 70.0 47.8 70.3

3pefer to Fig. 13 for microphone positions.



Table IV. Narrow-band Pressure Levels for Diffraction of
Sound by a Cylindrically Capped Barrier: Source
6" Below Highest Point on Barrier.

25

Microphone Frequency
Locationd 490 Hz 900 Hz 2050 Hz 4050 Hz
1 66.0 dB 91.0 d8 89.0 d8 95.0 dB
2 63.8 86.8 83.3 87.5
3 59.3 84.5 77.0 87.5
4 58.0 78.3 69.5 75.8
5 53.8 68.3 65.0 70.5
7 49.5 73.5 68.0 67.5
8 45.0 75.3 67.5 69.8
9 51.3 74.8 65.3 61.3

ARefer to Fig. 13 for microphone positions.
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Table V. Narrow-band Pressure Levels for Diffraction of Sound
by a Cylindrically Capped Barrier: Source at Height
of Highest Point on Barrier.

Microphone Frequency
Location? 490 Hz 900 Hz 2050 Hz 4050 Hz
1 66.3 dB 91.3 dB 87.3 d8 85.8 dB
2 64.5 84.5 86.3 89.5
3 61.8 86.8 81.5 86.8
4 56.0 ‘ 75.8 68.5 78.8
5 55.0 71.5 68.3 69.8
7 49.3 75.3 ‘ 72.3 74.8
8 47.5 77.0 66.3 61.0
9 51.0 71.3 63.3 65.0

Apefer to Fig. 13 for microphone positions.
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constructive interference between waves transmitted directly to

the receiver and those reflected from the cylindrical cap.




Chapter 3

THEORY OF SOUND DIFFRACTION
AROUND SCREENS AND WEDGES
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INTRODUCTION

Solutions corresponding to constant frequency sound dif-
fraction by a rigid wedge or a rigid screen (a limiting case

1,2 In particular, the exact so-

of a wedge) are well known.
lution for the case of a point source in the vicinity of such
a wedge or screen appears in various places in the literature
as a contour integral in the complex plane with an integrand

of moderate complexity involving elementary transcendental

5,4 This integral is not directly expressible in a

functions.
closed form, but its value when both source and listener dis-
tances from the edge are large compared to a wavelength can
be expressed to a uniform asymptotic approximation in terms

5,6 or related functions7. Expansions

of Fresnel integrals
have also been derived which are appropriate to the case when
either source or listener is close (relative to a wavelength)
to the edge.8
For those situations in which one of the distances in-
volved is neither large nor small compared to a wavelength,
it may be necessary to perform a numerical integration of the
contour integral (or of other integrals which would appear in
equivalent expressions) or to sum a large number of terms of
the expansion appropriate to the length being small compared
to a wavelength. Such numerical integration or summation,
however, may be slowly convergent and may be difficult to per-

form even with the aid of a large digital computer. Although
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direct computations of this sort have been performed by Ambaud

and Bergassoli9

» the method they describe, while leading to
accurate values which agree well with their experiments, is
intrinsically limited in application to source-listener geo-

metries in which neither location is at an extremely large

number of wavelengths from the edge. Further, the method is such

that severe computational difficulties would be encountered

were the listener arbitrarily close to the shadow zone boundary.

- While one might expect such calculations to meld with calcula-
tiéns using the results of a uniform asymptotic approximation,
the match would be evident only from a direct numerical com-
parison.

The present chapter is prompted by the problem of estimating
aircraft noise shielding by winés (engine-over-wing configura-
tion), one of the features of which is that the sound sources
are neither very close or very far (relative to all wavelengths
of interest) from the wing trailing edge. Research on this
topic should be aided by the availability of a convenient gen-
eral purpose method for the calculation of the acoustic pressure
(i.e., the Green's function) at an arbitrary listener location
caused by the presence of a unit strength point source near a
rigid wedge or screen. Ideally, the method should be based on
a formulation which reduces directly (without excessively intri-
cate manipulations) to know limiting cases (i.e., source on

edge or source and listener both far from edge).
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Fig, 1. Geometry used to describe diffraction of sound
~waves from a point source by a wedge.
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Such a formulation, with accompanying numerical examples,
is presented here. Furthermore, the plots included here should
enable one, without further need of a digital computer, to esti-
mate the sound field and the sound reduction for the important
limiting case when the listener is many wavelength§ away from
the edge and much further than is the source (kL>>1,rro/L2<<1

in the notation explained below). Discussion is also given of
the accuracy of approximations commonly made in acoustical

studies. .

I. GEOMETRY AND FORMAL SOLUTION

The geometry appropriate to the problem under consideration
is that of a rigid wedge whose edge lies along the z-axis (Fig.
1) in a cylindrical coordinate system (r,6,z), with the two
faces taken as the ¢ = 0 and 6 = 8 planes, such that the region
exterior to the wedge extends from 6 = 0 to 8 = g8 (with g>n).
A thin screen corresponds to 8 = 2r. (Here we use the same
notation as was used in a previous paper7 by one of the authors.)

The source of sound is a single harmonic point source (ang-
ular frequency w, wavenumber k = w/c) located at a point (ro,eo
zo) and of strength such that the acoustic pressure field p in
the source's immediate vicinity is given by eikR/R plus bounded
terms when R, the net distance from the source, is substantially
less than the distance of source from edge. Here a customary

time dependent factor of e 19t 5 understood but omitted for
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| simplicity. The acoustic piessure field dependence thus cor-
responds to a Green's function G(5|50) which satisfies the
scalar Helmholtz equation with the customary source term
-4:6(§-§0) on the right hand side. Boundary conditions cor-
responding to the rigid wedge are that 3G/36 = 0 at 6 = 0 and
o = B, respectively.

For present purposes, it is convenient to take the solu-
tion to the problem just posed‘in the form (but in the present

9

notation) utilized by Ambaud and Bergassoli®. This, with some

paraphrasing of notation, can be written

4

Glglx,) = Z:I[G(Ci)"("'ci) + Viey))] (1)
&
where
tg = le-e,l (2a)
g, = 28-[e-8 | (2b)
Ty = o+o) (2¢)
gy = 28- (6+e,) (2d)

Here U(g) is the Heaviside unit step function. The G(ci)U(w-ci)
terms for i = 1,3,4 correspond to waves inferred from purely geo-
metrical acoustical considerations, i.e., (i=1) a direct wave,

(i=3) a wave reflected from the 6 = 0 face, and (i=4) a wave re-

flected from the ¢ = 8 face. (The term G(cz)U(n-cZ) is always
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zero, since % is always greater than =, but is included to
preserve the symmetry of the expression.) The term G(t)
represents a radially symmetric spherically spreading wave,

generically denoted by eikR/R, where (arbitrary argument ¢)
R = [r2 + rg + (z-zo)2 - 2rr, cos ;]Li (3)

This distance, for the four particular values of ¢ listed
above, may be interpreted as: (i=1) distance from source;
(i=2) distance from an image-image point; (ro, 2(g-w) + eo,zo)
if 8>6 3 (i=3) distance from image of source reflected through
& = 0 plane; and (i=4) distance from image of source reflected
through 6 = g8 plane. (While the geometrical interpretation of
¢, may seem irrelevant since U(n-cz)is always zero, the inter-
pretation is germane to the interpretation of V(cz) in the
limiting case, termed the Fresnel number approximation, below.
The image-image is formed either by reflecting the source
through the ¢ = 0 plane, then reflecting this image through

the ¢ = g8 plane or by carrying out the reflections in inverse
order. The construction is indicated in Fig. 2.) In the cases
i=1,3,4, the presence of the Heaviside unit step functions as
factors in the geometrical acoustics terms insures that: (i=1)
the direct wave is zero unless the source may be '"seen' by the
listener; (i=3) there is no contribution from a wave reflected
from the ¢ = 0 face unless one can construct a specularly re-

flected ray going from source to face to listener; and (i=4)
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there should be‘an analogous ray reflected from the 6 = 8 face
connecting source and listener if the corresponding geometrical
acoustics term can contribute to the field.

The sum of the terms V(ci) in Eq. (1) may be interpreted
as the diffracted wave. Each may be written in a similar
fashion as a definite integral, which, in the form taken by

Ambaud and Bergassoli, is
V(e) = -(1/n)f°° 6(reiu) Qlw,v,¢) dw (4)
(o)

with

(v/2) sin[v(n-z)]
Qw,v,2) = cosh(vw) - cos[v(n - z)] (s)

-

the index v Bbing n/8 (v = 1/2 for the thin screen, 2/3 for a

right angled wedge). Here G(n+iw) represents the wave function
eikﬁyR. R being given by Eq. (3), with ¢ replaced by =n+iw, or,
equivalently, with cos ¢ replaced by -cosh w. The quantity z?

is real and positive, R being understood to be the positive

square root of R2, throughout the integration over w.

II. REFORMULATION OF DIFFRACTION INTEGRAL

Direct numerical evaluation of V(z), while possible, is
unwieldy because of (1) the infinite limits, (2) the oscilla-
tory nature of the integrand and the attendant slow convergence

in many cases of interest, and (3) the fact that Q is unbounded
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near w = 0 as g»r. To avoid such difficulties we change the
variable of integration and the path of integration. To this

purpose, we note that Q = dy/dw where ¢ is such that
tan ¥y = tan[A(z)]tanh[(v/2)w]

and where A is (v/2)(-B-n+z) plus any multiple of n. If we
refine the definition of A(z) and ¢ such that y varies from
0 to A as w varies from 0 to =, the proper choice for A is
(given 0<z<28)

A(g) = (v/2)(-8-m+z) + aU(n-g) (6)

The value of y corresponding to its tangent as given above is
understood to lie between -7 and ™ and to have the same sign as
A. One may note that A{(z) is discontinuous at ¢t = n: A(z) in-
creases from a positive value (v/2)(8-n) at ¢ = 0 up to /2 at
¢ = n , then drops abruptly to -n/2 at = «* and subsequently
increases linearly, passing through 0 at ¢ = B8+n, up to the
original value (v/2)(B-v) when ¢ = 28.

Some indication of the variation of values of the A(z;)
[abbreviated Ai here] with the source énd listener coordinates
90 and ¢ may be obtained if one considers the specific case
Ttypically of greatest interest) in which the source is on the
far side of the wedge, 8 > e, >, the listener is in the

shadow zone, 0 < & < 6, - ™ (See Figure 3). In this case all

the Ai are negative and between -v/2 and 0, the magnitudes
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IAII and IA4| increasing with increasing & and conversely for
'A3i and ]Azl. At 6 = 0, Ay = A; and A, = A,; in general one
has |A,| > Azl > |A,] and ALl > [A,] > [A,|. One may note
that the line, A1 versus 6 equals -v/2 at the shadow zone boundary.
The lines A3 and A, cross only if 0y > (g+n)/2 and, when they do,
they cross at @ = g - 6, with the mutual
value A3 = A, - -u/2 + (v/2)(B-71) = -uv/2.
If we now change the variable of integration .to q = y/A,
then Q dw = A dq and q varies from 0 to 1. The remainder of the

integrand can also, after some algebra, be expressed in terms of

q rather than w. The pertincnt intermediate result is

R o= [12 + rr (Y - Y- 1)2)% (7)

where we abbreviate

% (8)

L o= T(r+r)?+ (z-2,)%)

_ Ytan(a) + tan(qa)| 1/(2V) (9)

| tan{A] - tan(qA)

Y

The quantity Y, and therefore the spherical wave factor, is in-

dependent of the sign of A. Thus we may rewrite the integral in

Eq. (4) as

Vv(z) = - (1/) ACz)(e /L) F(1A],a,e) (10)

where

1
Fo(|A],a,e) = J[ I(q) dq
0

(11a)
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= . = 2
o k rro/L, € rro/L

1(q) = (L/R) eik(F-L) (11b)

with L and R as given above.

The set of argumehts of Fv is readily seen from the above
equations to be complete. The forms chosen for the parameters
e and' ¢ are particularly convenient in the consideration of limit-
ing cases. From geometrical considerations, € is always less than
1/4. The parameter a, which has the appearance of a Fresnel wave
parameter, may in principle have any value. The quantity L has

the important g€ometrical interpretation of being the length of

the shortest two segment path which goes from source to edge
and then to listener (i.e., L is the length of a diffracted

ray path).

III. THE DEFORMED CONTOUR

The variable q is now considered as a complex variable
and the integral over I(q) in the definition of F above is
interpreted as a contour integral in the complex q plane.
Rather than integrate directly along the real axis, we choose
a path C which (1) goes from 0 to 1, (2) has finite length,
(3) is such that Re(R-L) = 0 at every point on the path, and
(4) is such that, for nonzero a, eik(R'L) decreases monotonic-
ally from 1 to 0 as q travels the path C fromq = 0 to q = 1.
lThat a path with these properties exists is supported by the
mathematical foundations of the method of steepest descents and
is substantiated by the construction given below.

The evaluation of the integral along the contour C is

facilitated by a reformulation of the function I(q), Eq. (12).
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The restriction Re(R-L) = 0 along the path implies that we may
introduce a real parameter K such that, at any point on the

path, R is related to K by

R = L[1 + ieK?) : (13)

Here K ranges from 0 through positive values when q ranges from
0 through successive points on the path. The relationship
between q and K may be determined by equating the squares of
Eqs. (7) and (13), then inserting the expression (9) for Y,

and solving for q. In this manner one finds

q=—2— tan"! [tanh X tan |A}] (14a)
2

|A]

with
. ) 1/2
sinh X = K[i/2 - €K2/4]} (14b)

The several ambiguities in the definitions of the square root
and of the implied inverse trigonometric functions are
resolved by the requirement that q vary continuously from 0
to 1 (although not on the real axis) as K varies from 0 to =.
To accomplish this, one defines the square root in Eq. (14b)
to be such that its phase is between n/4 and /2, then defines
X to be such that Re(X) > 0, 0 < Im(X) < »/2, and q to be such
that it lies in the first quadrant.

The computation of agp and q for given values of K is
generally facilitated by reducing Eqs. (14) to explicit equations
involving only elementary functions of real variables. Such a

reduction yields, for example
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tan(ZIAIq ) = sin (2]/A]) sinh a (15a)
cos b + cosh a cos(2|A})
in which
sinh (a/v)
sin bywy - KO Q2)1/2 & Q)}/2 (15b)
with
Q= 3 K2[1 - ¢ + } 2K (15¢)

The expression for tanh (2|A|qI) is similar to Eq. (16a):

sinh a, cosh a and cos b should be replaced by sin b, cos b,
and cosh a, respectively. The restrictions mentioned above
concerning phases and btanches imply that b/v is between 0 and
7/2 for K < (2/¢)1/* and is between ©/2 and « for K > (2/¢)1/%.
The restrictions further imply that 2!A|qR lies betwecn

J and .

Some computed plots of the deformed contour C in the com-
plex q plane and of the corresponding variation of K along the
contour are shown in Figs. 4 and 5. Analysis of the equations
given above indicates that such contours always proceed from
q = 0 obliquely upward at an angle of 45° with the real axis
and this is confirmed by the computations. The terminal point
q = 1, is approached from above and to the right, making an
angle (1-v)n with the real axis to the right of q = 1 for non-
zero €. In the limiting case of a screen, v = %, the contour

terminates at a right angle with the real axis. In the limit
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of vanishingly small ¢, the contour C approaches a limiting form
which approaches q = 1 obliquely downward from the left, making
an angle of vr/2 with the real axis. The principal modification
of this limiting form caused by nonzero ¢ is a small "kink"

near q = 1 in which ap overshoots qp = 1 slightly (except for

v = %), the contour then bending back and approaching q = 1
obliquely downward from the right. The quantity K always in-
creases monotonically from 0 to = along the contour, except for
the limiting case where |A]| is identically =/2. If |A| is
slightly less than this upper limit, K remains virtually zero
along the major bulk of the contour but increases rapidly to =
near the very end of the path.

At this point, we may note that the reformulation of the
diffraction integral as represented by Eqs. (10-12), with C
taken as the integration contour, has removed all the difficul-
ties pointed out at the beginning of this section. The limits
of integration are now finite, the modulus of the integrand I(q)
is bounded by 1, and the integration along C removes the problem

of the oscillatory nature of the integrand.

IV. LIMITING CASES

The formulation as presented leads either directly or with
minor mathematical manipulation to a number of important limit-
ing expressions for the Green's function and for the various

terms which contribute to it.
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1. Source or listener on edge. This case is characterized

by e = 0 and R =1L for all values of q, so we have
FV(IAI,O,O) =1 (19a)
and the total Green's function reduces to
Glx|x,) = 2vL " YelkL = (2q/8)L" teikl (19b)

where, in this instance, L is simply the distance from source to

listener. The above pressure field, except for the limiting case
of a thin screen (where 8 = 2n), is always larger than what would
be expected were the wedge not present. The Green's function for
source or receiver on the edge could also be derived from simple

| symmetry arguments (the field must exhibit spherical symmetry for
source on edge, the total volume velocity of the source must be

the same as in the absence of the wedge, but the volume velocity

per unit solid angle increases by a factor of 4+/28, where 28 is the

solid angle external to the wedge about a point on the edge)

without the necessity of the general solution,

2. The limit |A| » n/2 or ¢ » n. In this case the ap-
proximation R = L is valid over most of the length of the contour
C, the contribution from portions of the contour where this ap-
prcximation does not hold becoming increasingly negligible as |A]

becomes progressively closer to =/2. Thus, we obtain
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F,(n/2,a,¢) =1 (16a)

so the sum of the corresponding geometrical wave G(g)U(x-z) and

the appropriate diffracted wave term V(z) should have the limit

1im (G(g)U(x - g) + V(z)} = (1/2)eikl/L (16b)

g m

regardless of from which side the limit is approached. Thus, the
total field, as expected, is continuous.

3. The uniform asymptotic limit, where krr /L >> 1, |A] is

arbitrary. This corresponds to both kr and kro being large and
lz - zol being less than or comparable to (r2 + rg)%. Equiva-
lently, both source and listener are far from the :dge and the
angle between the edge and the broken ray from source to edge to
listener is not close to 0.

In the evaluation of this asymptotic limit, it is convenient
to regard K as the variable of integration. The derivative dq/dK
may be evaluated by implicit differentiationof Eqs. (15b) such
that dq/dK is a function of a and b times the derivative
d(a+ib)/dK. Since krro/L is large we may expect the dominant
contribution to the integral to come from small values of K.
However in the limit K + 0, dq/dK is inversely proportional to
cos(2]|A|) and is singular when |A| + /2. To cover this contingency
one expands the denominator in the function just mentioned to the

next order nonvanishing term (which turns out to be second order)
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in K. The remainder of the factors (except for the exponential)
are approximated by their limits as K -+ 0. In particular, one may
note from Eqs. (15) that d(a+ib)/dK is just v(1+i) in this 1limit.
The variable of integration is next changed to u = al/2K, then

the resulting integral is recognized as a constant times the integral

An(X) = (X/w%\}r“ e-uz du
D ’ TG72)X7+ 1 u?]
0 17
= f(X)-i g(X) (X » 0)
where
X = [4a/n]"% (1/v) cos(|A]) (18)

Here F(X) and g(X) are the auxiliary Fresnel functions discussed
7
in a previous paper by one of the authors and which are tabu-

lated on pages 323-324 of the NBS Handbook of Mathematical Func-
11

tions, The mathematical manipulations as outlined above then

lecad to the expression

P, o« (x//2) e2™% [(sin]A[)/AIVIE(X) - i g(X)] (19)
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for krro/L >> 1. One may note that, although the coefficient of
cos(IAi) in Eq. (18) is presumed large, it cannot necessarily be
assumed that X is large since cos(]|A|) would be very small were

|A| close to =/2.

In the limit of large X, the quantity f - ig approaches
1/(rX) and thus E decreases asymptotically as the inverse square
root of « for nonzero value of cos(|A|). When |A| approaches n/2,
both f(X) and g(X) approach the value 1/2, the limiting values for
X + 0. In this limit F goes to 1, just as indicated by Eq. (16a).
It should also be noted that in this approximation Fv is indepen-
dent of the parameter ¢ for a fixed value of a.

4, The Fresnel number app}roximation.l2 If, in addi .:n to

krro/L >> 1, it is true that cos(|A|) is substantially less than
v, the parameter X in Eq.(18) may be interpreted as X = (2N)%

where N is a Fresnel number given by
N = (L -Ry)/(2/2) (20)

which represents the excess of the diffracted path length L be-
yond some direct path length RA in units of half wavelengths.

The appropriate identification of RA is

R, = [r2 + r2 + (z-2_)2 - 2rr_cos(B )]lﬁ 21
o 0 0c0s (B, (21)

A

with BV(IAl) taken as
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BV(IAI) = & {n - (2/v){(n/2 - |A}])} + 2nn (22)

with n being an integer (0, positive, or negative) and with any
choice of the two signs. With the purpose of giving a meaning-‘
ful geometrical interpretation of BV, one may show with some
effort that it is possible to choose the sign and the integer

n such that

6+ B, =0 (c=1o -0l) (23a)
=9 + 2(g-n) (z = 28-]8 -aol, 8 > eo) (23b)
=0 - 2(8-m) (¢ = 28-16 -eo], 6, > 8) (23¢)
= -0, (c=0+8) (23d)
=28 - 0, (=28 -8-58) (23e)

Thus, with reference to the discussion following Eq. (3), RA is
the direct distance of listener from (i = 1) the source; (i = 2)
the image of the image; (i = 3) the inage formed by reflection
through the 6 = 0 plane; or (i = 4) the image formed vy reflec-
tion through e = g plane.

That X is approximately (ZN)li where N is as defined above
in the limits cos(|A|) << v, a, follows from the general expres-
ion (22), from the (consistent) approximation sin[(1/v){(n/2 - |A}|)]
= (1/v)cos(|A]), from the fact that ¢ is always less or equal to

1/4, from the definition (8) of L, and from an appropriate binomial
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expansion of RA

When the Fresnel number approximation is valid, |A| should
be close to n/2, so it is consistent to approximate the
sin(|A})/|A| factor in Eq. (19) by 2/v and the resulting expres-

sion for F, becomes
F, = (V2) e 14 (e(2n1®) - 1 g(12M1%)) (24)

This represents a considerable simplification in that the right
side depends on one and only one parameter N of relatively simple
geometrical interpretation. There is no explicit v, |Al, a, or
¢ dependence, other than the manner in which these enter into the
determination of N. The expression above also has the virtue of
never giving a magnitude of F, greater than 1.

The corresponding expression for V{(¢) in the Fresnel number
approximation may be obtained from Eq. (10) with A(z) replaced
by (n/2)sin(x - ¢). This is in accordance with Eq. (6) and the
fact that |A| should be close to n/2. Consequently, Eq. (24)
ikL

should be multiplied by sin(z - n)(2L) le to obtain V(z).

5. The case when kL is large but krr /L is finite or e<<1, a
finite. The two statements are eqﬁivalent since kL + = with krro/L
fixed implies rro/L2 + 0. This limiting case is of interest in
those problems where the source is at finite or small distance re-
lative to a wavelength from the edge but the listener is at a large

number of wavelengths from the edge, much further than is the

source. Conversely, because the solution conforms to reciprocity

e




(interchange of source and listener), the corresponding limiting
solution corresponds to the pressure field in the vicinity of the
edge when the source is a large distance away. In this reciprocal
probiem the incident wave near the edge is very nearly planar, so
the limit can be obtained from the solution of the related problem
of nlane waves incident on a rigid wedge. The limiting case,
sc'rce near edge, listener far from edge, is of principle interest
in aircraft noise problems where the source is in the vicinity of
~ wing but the listener is on the ground at a large distance away.
The limiting value of the diffraction integral F, as
rrO/L2 + 0 may be simply denoted as Fv(lAl,u,O). The limit exists
and may be readily obtained from the formulation given in the
previous section by (1) replacing the factor L/R in the integrand
by 1 and (2) setting ¢ = 0 inEqs. (14) and (15). This
yields sin(b/v) = tanh(a/v) and Eq. (15b) gives K2= sinh?(a/v)/

2
oK long the contour C.

cosh(a/v). The integrand I(q) reduces toe
The vaiue of the integral Fv(lAl,a,O) for |A] = n/2, or for

a =0, or for a >> 1 may be inferred from the cases 1-3 discussed

above. Thus F is 1 for IA] = n/2 or for a = 0 and is given by

Eq.(19) for a >> 1, Also, the Fresnel number approximation, Eq.

(24), should be applicable in the double limit a« >> 1 and cos A << v,

the appropriate identification for the Fresnel number N in the

limit ¢ + 0 being

N = 4[rro[(>L)]cosz(Bv/2) (25)
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As regards the behavior of F (|A],a,0) for a << 1, one can
derive an expansion of the contour integral in noninteger

powers of a, the starting point being

F_(|A],a,0) = 1 -f”u - e<K)(dq/da)da (26)

In view of the restriction krro/L << 1, the first factor in
integrand above is small unless a is relatively large. Thus,
if we seek just the leading term and anticipate that this, for
sufficiently small values of the expansion parameter, is larger
than any given constant times this parameter, it is sufficient
to adopt the approximations K2=(1/2)ea/“, dq/da = |A] "!sin
(2|A|)ei""/2 e’?, i.e. asymptotic limits fcr € = 0, a large.
Then the variable of integration may be changed to u = (1/2) aea/v
such that (dq/da)da is a product of u-independent factors and
u-V-ldu, one of these factors being [¢/2]Y. The lower limit on
the u integration becomes «/2, but, providing v is not very
close to 1 (i.e., we here exclude the case of highly obtuse
wedges), this can be approximated by 0 insofar as we are only
interested here in the lowest order (which is lower than first

order) term in a. In this manner, one obtains

F (|A],a,0) = 1 - |A| Isin(2|A])e 1V"/2

[a/21"T(1-v) (27)
Here we recognize (after integration by parts) that the inte-

~v-1

gral over u of v{l-e %)u is the gamma function with ar-

gument 1-v,
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The fact that v is less than 1 implies that the magnitude
of Fv decreases sharply from 1 (the derivative of its magnitude
with respect to the expansion parameter is negative and becomes
singular when the parameter approaches zero) when a increases
from zero. As discussed subsequently below, this implies that
a modest amount of sound reduction in the shadow zone is
achieved even when the source is only a slight distance from
the edge,

In this same limit of rro/L2 + 0, krro/L << 1, the total
Green's function (found by inserting the above into Eq. 1)

becomes

1eikL -ivn/2

G(x[x ) = (2n/8)L" {1+ 2e [1/r(1+v)] [krr /(20)]"

(28)
cos(ve)cos(veo)}

where we make use of the identity
sin(vn)r(i-v) = vn/r(1+v)

The above approximate Green's function is consistent with a
more general expansion given by Tuzhilin.8 One may note that,
if the listener is in the shadow zone, cos{vé) and cos(veo)
have opposite signs, so the second term in Eq. (28) would de-
crease the magnitude of the Green's function in such cases

(as should be expected) from that represented by just the first
term. The phase of the Green's function is predicted to be

greater than kL. (The formulation in general requires the
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phase in the shadow zone to lie between kL and kL + n/4.)

. 6. The case of a thin screen (v = 1/2) for ¢ » 0 with

a finite. For the most part, it is conceptually simpler to
consider each V(;i) in Eq. (1) as being calculated individu-
aily, the sum being found subsequently. Although these occur
in pairs, V(z) and V(28-z), there appears in general to be no
major analytical simplification obtained by considering such
a pair as a unit. An important exception is the case of the
thin screen (v = 1/2). The fact that some simplification
‘ should be possible in this 1limit should be evident from the
fact that the geometry of source, images, and image-image in
this 1limit is degenerate: the source and image-image coincide
and the locations of the two images coincide. The analytical
simplification is of minor computational advantage except in
the limit € - 0. The simplification which results in this limit
(which, as pointed out above, is equivalent to the problem of
diffraction of plane waves by a thin screen) is that the
Green's function and each 6f its two constituent pairs,
V(cl) + V(Zs-;l) and'Vk3)+-V(28-c3), can be expressed rather
simply in terms of Fresnel integrals. (Given the incident
plane wave interpretation of this limit, this is a well known
result.)
The manner in which the result may be obtained from the
- formulation presented here is first to change the integration
over q to one over a. Then the sum V(g) + V(28-¢), with V(¢) as

given by Eqs. (10-12), with the q integration along the contour




C, may be grouped as a single integral over a from 0 to =

which involves a factor
A(z) dq(|A t)|,a)/da + A(28-%) dq(lA 28-z)|,a)/da

One should note that q, considered as a function of A and a,
will in general have different values if |A| is taken as

|A(z)| or |A(2e-z)|. Evaluating this expression for v = 1/2,

8 = 2, ¢ = 0, such that sin[2|A(¢)]|] = |cos(z/2)}, cos[2|A(c)]|] =
-sin(z/2), tan ﬁ/ﬁ tanh a, K2= sinh(2a)tanh(2a), etc., it
eventuates, after some lengthy algebra and application

of various trigonometric identities, that this can be e;pressed
rather simply as a function of K and cos(¢/2) times the der-
ivative dK./da with no explicit dependence on a. Consequently,
the variable of integration can readily be changed to u = al/ 2K,
Once this is done, the integral appears in the form of a constant
times the diffraction integral AD(X) of Eq. (17) with the ap-
propriate identification for X being

X = [4u/n]¥|cos(c/2)| (29)

In this manner, we obtain

A(g)F, (1A(c)],a,0) + A(28-c)F (|A(28-¢)],a,0)

. (30)
-sign{cos(c/Z)](n/Zk)el"/4[f(x)-i g(Xx)}

with X as given above., The corresponding expression for



56

Viz) + v(28-z) is just -(1/7)L ikl tines Eq. (30). The
total Green's function may then easily be written down from
Eq. (1). In the case where the listener is in the shadow zone
(diffracted field only), cos(tz/2) is negative both for

t = |e-6 | and for ¢ = 6+e,, so the field is

- oY% -1 ikL _in/4 _ s
G(x|x)) = 27°L "e" e {[£(X) - i g(x)]c = lo-0,]
(31)
U (0} MO
in which the indicated values of ¢ are to be used in Eq. (29)
to compute the variable X. ’
V. NUMERICAL INTEGRATION SCHEME
We return now to the general problem of determining the
integral F . The integral over I(q) along the curve C can be
symbolically written
E, / I(K,e,a)dq (32)
C
-where
- -ak?2
I(K,c,a) = (1 + iek2)™1 oK (33)

The quantity K is that given implicitly by Eqs. (15) and may be
considered a monotonically increasing real function of distance

along the contour C.
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The prototype integration scheme suggested is one in which:
(1) the variable of integration is first changed to K; (2) the
domain of K integration is broken into N + 1 intervals (O, Kl),
(X, Kz); «e+vy (Ky, =) where N > 1; (generally one takes
N = 1) and (3)\the integration over the first N intervals is

transformed through an "integration by parts'". Thus one has

N K,
F, = Z / J(K, e, a,]A]) dK (34)

n=1 Kn-l

+ I(Ky, €, o) q(Ky, €) + / (I) (dq/dK)dK

KN

where

J(K) = -2 1(K) q(K)K

We also use the fact that q(K) = 0 if K = O,

One may note that the real and imaginary parts of the
function J(K) are bounded and continuously differentiable and
that these component parts are certainly not oscillatory,

Thus, one may expect that the first N integrals of the above will

be amenable to any numerical integration scheme which, while



utilizing values of the integrand at only a relatively limited
number of points (less than, say, 10), achieves a high accuracy
because of the "smoothness" of the integrand. Possible integration
formulas (Chebyshev's equal weight, Gauss's, or Lobatto's, for
example) are summarized in particular in Sec. 254 of the

Handbook of Mathematical Functions!“. (Our experience has been,

in the present context, that 10 point Lobatto integration
invariably gives at least eight digit accuracy.)

As regards the integral from KN to =, the qualitity
[I(KN) ] |1-q(KN)l may for most practical purposés be considered
as an upper bound to its magnitude. It may be presumed that one
has chosen KN sufficiently large, either that the magnitude of the
integral is definitely negligible within the desired computational
accuracy or else that the e~aK2 factor in the integrand dominates
its decay. In the former case the last term is discarded while
in the latter case it is evaluated By (1) integrating by parts
and (2) performing the integration over the resulting expression,

which has the form (representing the sum of the last two terms in

Eq. (34).

f e *K% k) dax

Ky

(with an obvious identification for L(K)) by Hermite integratior.l!%
(Our experience is that an 8 point scheme is more than adequate).
The choice for the Kl’ ...,KN as well as the parameter N

should not be too critical. One could compare answers obtained

with different choices of these parameters in order to assess
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whether or not some desired accuracy has been obtained. One
could, for example, simply take N = 1 and Ky = 1/a, unless

o were extremely small compared to unity. (We have at present
a somewhat elaborate scheme for chosing these parameters, but
the details seem too arbitrary and unimportant to warrant their
inclusion here.)

Computation time for a single value of Fv may be considered
as roughly directly proportional to the number of times which the
function q(K) must be computed from Eq. (15) (which is a straight-
forward evaluation requiring trigonometric and inverse trigonometric
functions). This number is typically just 18 with the scheme
as outlined above so the computation time should be of minor
consequence, given the availability of a modern high speed
digital computer.

Some sample calculations are presented in Figs. 6 and 7.
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Chapter 4

SCATTERING OF SPHERICAL WAVES
BY RECTANGULAR PATCHES

The body of this chapter consists of a copy of a

paper prepared for submission to the Journal of Sound

and Vibration by W. James Hadden, Jr., Robin A, Vidimos

and Philip M. Sencil. [The experiments described in
the paper were performed in an anechoic chamber at

NASA Langley Research Center (Fig. i).]



g

Al

{

) »
/ /) /r}‘
) _.,.-_ v e
- f

1 -’
l\ \

T
f 1%
$ ‘7."

t

, . \ |
l- A i . AL
’ PR
| R
Y
@ - AN R g
'] )
A
S l§$ 3 '
. Y .
- ¥ ' Y
1

Photograph of experimental arrangement
for scattering by patches.

()!fn‘.“' A\, PAG
OF POOR Q




66

Abstract

A theory is presented for the scattering of spherical waves
by a rectangular area whose acoustic impedance differs from that
of the surrounding plane. This theory extends previous analyses
to include diffraction efrects explicitly. Results of experiments
concerning reflection from rectangular patches are also reported.
Agreement between these results and predicted values is not
uniformly good, although improvements could be achieved through

alterations in the measurement procedure.
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INTRODUCTION

The present paper is motivated by an interest in the effects
of acoustical characteristics of the ground on sound originating
in low-flying aircraft. As part of this study, analytical and
laboratory investigations have been performed on the reflection of
sound by plane surfaces of known acoustic impedance [17. In
analyses of the reflection of spherical wavc;s by ¢ plane surface
on which a local-reaction impedance boundary condition is imposed,
it is customary to employ the method of steepest descents in order
to obtain an approximation for the reflected pressure [2,3]. The
use of this approximation can be interpreted in terms of geometrical
acoustics as neglecting the effect of waves scattered from regions
of the surface outside a neighborhood of the shortest reflected
ray path from the source to the receiver. The investigation with
which the present paper is concerned sought to determine the size
of the effective area near the vertex of the reflected ray. This
information could be used in developing a simplified technique for

predicting the received sound for moving sources near the surface.

In the interest of simplicity, experimental measurements were
made in an anechoic chamber of sound pressure levels above rectan-
gular patches of various areas. Pure tones were used to excite a
small source. Sound pressure level measurements were made in the
direction of the presumed reflected ray path. These experiments

<
are described more fully in Section IV. In conjunction with the
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experimental work, a theoretical investigation of scattering by
rectangular areas was undertaken in which diffraction effects due
to the finite size of patches were included. This analysis is

discussed in Sections I-III.

I. THEORETICAL EXPOSITION

The analytical development is roughly parallel to that of
Morse and Ingard for plane wave incidence [4]. The surface z = 0
contains a rectangular patch with point impedance quA;1;n3ide
the patch the normalized impedance is taken as n. The geometry
is illustrated in Figure 1: A point source is located at (rs,es,¢s);

the receiver coordinates are (r,6,¢).

The received pressure may be expressed, employing Green's

theorem, as
ap
p(x) = pyG(z|ry) - / f ds, [G(x|ry) — (ry)
T T ez -

3G
" plrg) (rlr_o)] ey

(o)

=
ZOO

in which the Green's function G({Iro) is approximated by temms
representing a source point r, = (ro,eo,¢o) and a single image

) with the image source strength (a modified

N '
point r = (r,,mn-6,,6,

plane-wave reflection coefficient) chosen such that the condition



in aG(rlro)
G(g,ro) - 3:-;; ~ =0 , z=0 (2)

is satisfied to a better degree of approximation than could be |
obtained by using the plane-wave reflection coefficient. The

approximation to the Green's function is

ik|r - 1| ik|r - r!|
e = e = 2

6(rlr) = ——— + R' ——— (3a)
N 41r|§‘ - ro] 41r|§ - rc')l

n B! cose; -1
U (30)
n B coseo +1

i
B' = 1 4 (SC)
klr - 1o
where e; is the azimuthal angle between the source-to-receiver
point line and a line parallel to the z axis, and the inclusion

of the factor B' represents an attempt to account for the curvature

of the wavefront.

The pressure terms in the integrand of equation (1) are
approximated in a similar fashion as a combination of waves
incident from a point source at Ig and an image source at gé
below a plane characterized by the normalized impedance A The

appropriate form for this approximation for the pressure may be

69



inferred readily from equations (3) with suitable modifications

of parameters. Thus the 'direct" pressure term in equation (1)

is taken as
| ]
elklf - %l elklr - 7l
pDir(E) S P\ ¢ Rs T (4)

in which Rs has the form of equation (3b) with
B'+B, =1+ i/kr_ and a;-»es = cos'l(zs/rs). The scattered

pressure term may be written as

ik(]r - 1l ¢ I1g - 15l

ikp
) e
Pgc(¥) = _[ f ds,
T ; It - rollry - 75l

~

]
>< B! B; coso' oS0, (n - "A) s
(1 + nB' cose')(1 + n,B! cose;)

In order to obtain a closed-form expression for the pressure at

some distance from the scattering area it is expedient to expand
the factors in equation (5) which involve the distances |r - 1|
and |r~° - x;sl as power series in x  and y, . The expansions of
such factors multiplying the exponential in equation (5) may be
truncated so as to yield a desired accuracy which depends on

ratios such as L/r and W/r. However, in the exponent the

70
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criterion governing truncation of the expansion involves the

Fresnel wave parameters, which have the form r/kLZ.

Retaining second-order terms in x

o’ Yo in the exponent in

equation (5) yields approximations for the scattered pressure in
which diffracti;)n effects are readily discernible. In addition,
this treatment allows one to investigate the transition from the
Fraunhofer diffraction regime (iarge Fresnel parameter - equivalent
to the Morse-Ingard treatment [4]) to the Fresnel diffraction
(small Fresnel parameter) range and beyond to the ray theory

limit. An outline of the present expansion of equation (5) is

given in Appendix A. The scattered pressure is approximated by

ik(r + rg)
kiW e

pSC(I) 3 PSC I(al »%o 981_a82 »Y) (6)

with the abbreviations

B BS cos6 cc:ses

Pse = 1P 7

© (1 + 1B cose)(1 + naBg cos6.)

and

U citogxsg® 1 -illo,v00Y - 8,Y)
I = dX e ) dY e
1 -

X(L+ MK+ NY + Qk2+ RYZ 4 SX)(n - ny)  (8)




72

and, finally
. . COS . k(L :
ap = (siné g5, ¢ + sineg ::151 ¢g) 'Z'(W) (%a)
2
.2 cos2
sin
2
2 2
.2 COS k [L
*r(l - sin"eg c5n2 4] 8rr, (wZ) (9b)
W
y = (rg sin%e sin2¢ + T sinzeS sin2¢.) LU (S¢c)
81'1'S

The parameters ay and a, involve projections of the scattering
area's dimensions (normalized by wavelength) on the lines from
source and receiver for the center of the area. The parameters
By» By and y are similarly projected inverses of Fresnel wave
parameters. These parameters characterize the diffraction effects
in the approximation for the scattered pressure. The coefficients
M, N, Q, R and S in equation (8), in addition to providing
correction terms depending on the size of the scattering area
relative to source and receiver distances from the patch, are
functions of the other geometrical and impedance parameters. The
coefficients M and N are linearly dependent on quantities such as
sing, sing and L/r or W/r. Q, R and S are quadratic in these

quantities. Explicit expression for these coefficients are given




in Appendix A.

II. PATCH WITH CONSTANT IMPEDANCE

For cases in which the impedance of the scattering area is
constant, the integrals in equation (8) could be evaluated by
completion of squares in the exponents followed by application
of standard integration formula, but for one complication - the
inner integral (e.g., the integration with respect to Y in
equation (8) results in several terms involving Fresnel integrals

[S] whose arguments have the form, in this case,
a, + yX
/2 (Z— 41 (10)
28,

The presence of the second integration variable precludes exact
analytical evaluation of the remaining integration. However,
reference to equations (9) indicates that the X-dependent and
unity terms in the arguments are of order (L/r) compared to the
ay terms. In addition it can be seen that both oy and y vanish
in the important case of specular reflection {8 = B0 ¢ = 0,

¢g = n). For these reasons, and in view of the behavior of the
Fresnel integrals in the small- and large-argument limits [5],
it seems a reasonable approximation to neglect the X-dependent
terms but to retain the unity terms in the arguments exemplified

by equation (10).
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If this approximation is accepted and the resulting expression
simplified by neglecting terms which are of order (kr)'l, (Lz/rz)
or smaller, the integral in equation (8) may be approximated as

" -1/2 1%

I =~ :———-—]T/—E u e AF(BZ,az/zﬂz)[AlAF(uBI,Val/zusl)
“(8182)

i B . .
. 1 1 (;1¢2+ ) e1¢2_)]
(Zﬂuﬁl) 1/2

] iBZ
lB2 e -i03+ ay *y
b - “—‘——-i-/—z- e AF Bl,
(ZnBZ) 261
-i¢ ay *y
P Ap(sl, 1 )]‘ (11)
281
with
u =1 -Y2/4§182 y Vv = 1+ azy/Zalsz (12a)
(val)z ag
¢1 = + (12b)
4”81 482

o o, (oL, )\ (12¢)
Zt M 1 2“81 -
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(o )%
0 —  — t 4 (12d)
3t 2
461

and

Y2p 1) - Rela20 - 1 (9)

AF{a,b) = Ff[a
in which we have employed the abbreviation Ff(x) = C(x) + iS(x),
C and S being the well-known Fresnel integrals [S5]. The coefficients

of the several temms in equation (11) are

B, = N+ ——+ S+ =——] — (14a)
2 28, 28, ) 28,
Ny + Saz RYO.Z
Bl = M+ + (14b)
28, 263

2
No Ra va
A = 1+ _—2-+ 2 + 1

282 432 2“81

( Sy Ryz)(val )Z
+ [ J— 14C)
— (
282 482 ZuBl

A contains terms of order unity. The terms in equation (11)

B

1

which involve B, and B, are of order (kr)'ll 2, General

expressions for M, N, Q, R and S are given in equations (AS8).
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One may check that equation (11) reduces to an extension of the
result reported by Morse and Ingard [4] by noting that in the limit
as B1s 0y and y become very small the function AF(a,b) [equation
(13)]), with arguments such as those in equation (11), may be
approximated [6] as

1/2 . 2
z) p-l oiab

AF(a,b) = (Tr'a- sin(2ab) (15)

Upon substituting this expression in equation (11), the first
term reduces to a form similar to equation (8.3.5) of reference
4. The second term in equation (11) vanishes in this limit, while

1/2

the third term is of order (g°/“) and hence negligible.

ITI. TWO LIMITING CASES

Although considerable simplification in the above expressions
for the scattered pressure may be achieved in several interesting
special geometrical configurations - forward scattering (» = ¢g- )
and specular reflection (¢ = ¢ - mand 6 = 6.) - only two special
or limiting cases will be considered in detail here for brevity.
The first, which is relevant to the experiments reported in
Section IV, concerns reflection in the special case irn which the
source and receiver are in the plane bisecting perpendicularly
the scattering area, i.e., ¢ = . [The case in which the
source and receiver are in a plane parallel to the x - z plane

of Figure 1 can be treated by an obvious modification of the




limits of integration in equation (8).] The second case for which
a compact expression for the scattered pressure can be obtained
concerns scattering by a strip (taken here as lying along the y-axis
of Figure 1).

An explicit expression for the scattered pressure can be
readily obtained in the special case of specular reflection with
¢g = m!

ik(r+ .
\ 1k( Fs) B B cose_ (n-n,)

pspec -

ip
o (r¢rg)  (1+nB cose.) (1+n,B_ cose,)

where the factors B and BS are defined after equation (4). In
this case the parameters 8y and 8, become

k(r + I’S) LZ COSZBS'

2 \ (an

The reduction of equation (16) to the form obtained by Leizer (7]
for a rigid rectangle is readily apparent if one takes the limit of

equation (16) as the normalized impedance A becomes very large.

An expression for the scattering by a strip of width L may be
obtained from equations (11)-(14) by considering the limit as

<@y By, and y become very large. It is also convenient to take
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~advantage of the y-translational invariance of the geometry by
setting ¢, = v. In the case of scattering in the specular plane,

the scattered pressure tem reduces to

i{k(rer )+1/4n] -i0, o
e i 1
pSpec,strip N ers(Blﬁg)llz kL psc N AF(%I’E;;)

Y . . id
X[u QIM*:J*Q)+-§Q-]+~————~—~1 7 o 2lueqfit - )
28, 28, 28, ] (! 2‘ 28,
ie. a
-e & M,Q_.}.u) (18)
28,

in which the parameter g, of cquation (9b) has been modified to

ﬁl n
2 zrrs

(r + 1) (19)

to produce a form consistent with the direct computation from
equation (A4) et seq. with the y -limits set to infinity. The

coefficients M and Q in this case are:

” [L (2 + nb coso) sind] (200)
= —— \ 0 2
2r (1 + B cosv) same s a,



2 [ sin 2 (2+n B c0s8) (1-3 sin’e)
Q = —5 5" /2 ————~
4r® | (1+n B cose) (1+n B coss)
L2 12 sine sind
+ -—-i-[same]s +
4rs rrs(1+n B cose)(1+nA By coses)

[2+ nB cose+nABS coses+1/2nnABBS cos9 coses]

For 0=6, (specular reflection), equation (18) reduces to

i[k(r+rs) + 1/4n]
. & 2. F8YH ()
prefl,strip N sc f\P1
(r+rs) cosé

with By given by equation (17).

IV. EXPERIMENTS ON REFLECTION

In the experimental phase of this investigation, measurements
of sound pressure level were made in the specular reflection
direction above rectangular scattering areas composed, in one
instance, from 4' x 8' (1.22m x 2.44m) sheets of 3/4-inch (0.019 m)
plywood laid on the floor of the Anechoic Noise Facility at the

NASA Langley Research Center; in a second set of measurements the
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plywood was overlaid with one-inch (0.025 m) glass-fiber panels.
In each case, pure tones were projected from a sowxce small
compared with the acoustic wavelength. The source and receiver

(a 1/2-inch microphone) were arranged so that the specular plane
bisected the scattering area. Incidence angles of 70° and 80°
were used. Normal impedances of samples of the plywood and
glass-fiber plus plywood were obtained from impedance tube measure-

rents.,

The measured‘ impedances were ‘employed in computations based
on equation (16); the 'background" specific impedance was assumed
as unity. The measured impedances for twe selected frequencies are
presented in Table I, Comparisons of the experimentally obtained
sound pressure levels with those computed from equations (1), (3)
and (16) are presented in Tables II-IX. Because the primary
interest in this study was the variation of the reflected sound
with size of the scattering area, all measurements have been

normalized to the experimental result for the largest rectangle.

As may be seen from Tables II-IX, the agreement between
experimental and theoretical results is by no means uniformly
good. Two possible causes of the discrepancies are suggested:
First, the assumption that the impedance of the grill-work flour
which surrounded the scattering areas can be taken as that of air
is suspect. Second, there is the possibility of a distributed-
reaction effect in the measurements. The former question could be

resolved by further measurements of sound pressures above the
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bare floor of the anechoic chamber. The second possible problem
could be rectified by the inclusion of a distributed impedance in
the development following equations (3).

V. CONCLUSION

A theory has been presented for the scattering of sound by
rectangular patches characterized by uniform (local-reaction)
acoustic impedances. The theory explicitly includes diffraction
effects absent from previous analyses. Comparison between this
theory and a set of laboratory experiments reveals discrep'ancies
which may be reduced by changes in the measurement procedure or in

the analytical model.
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- PN

RECEIVER

Fig. 1.

Sketch of the source-patch-receiver configuration used

in the analysis of scattering of sound by a rectangular
patch in which the acouStic impedance differs from that
in the rest of the plane including the patch,




Table I. Measured Specific Acoustic Impedances of Scattering Areas

Frequency Plywood Glass-Fiber over Plywood
1600 Hz 41.89 + i56.69 0.08 - i1.03
3200 Hz 2.33 + 122.62 0.10 + 10.17

Table II. Relative SPL above Rectangular Areas of Plywood with
Receiver Distance 2.7 m and Incidence Angle 80°.

Scatterer
Dimensions
(m) f = 1600 Hz f = 3200 Hz

Theory  Experiment Theory  Experiment

6.6 x 5.8 0 d 0 db 0 db 0 db

4.4 x 2.9 3.2 2.8 6.1 -2.8

2.9 X 2.9 1.9 2.0 205 '1.6

2.9 x 1.5 -0.6 3.0 3.1 -3.3

1.5 x 1.5 -2.4 3.4 -7.4 -4.3
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" Table III. Relative SPL above Rectangular Areas of Plywood with
' o _ Recsiver Distance 2.7 m and Incidence Angle 70°.

Scatterer

Dimensions ,
(m) f = 1600 Hz f = 3200 Hz
Theory  Experiment Theory Experiment
6.6 x 5.8 0 & 0 db 0 db 0 db
4.4 x 2.9 0 -1.0 0 0
2.9 x 2.9 0.7 -0.8 0 0
1.5x 1.5 7.0 0.8 0.9 3.4

Table IV. Relative SPL above Rectangular Areas of Plywood with
Receiver Distance 2.6 m and Incidence Angle 80°.

Scatterer
Dimensions
(m) f = 1600 Hz f = 3200 Hz
Theory Experiment Theory Experiment
6.6 x 5.8 0 db 0 db 0 d 0 db
4.4 x 2.9 2.3 3.0 6.5 -0.5
2.9 x 1.5 -1.6 8.0 3.1 8.5

1.5 x 1.5 -3.4 3.0 -9.1 6.0
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ETable V. Relative SPL above Rectangular Areas of Plywood with
Recenrer Distance 2.4 m and Incidence Angle 80°.

Scatterer

Dimensions
(m) f = 1600 Hz f = 3200 Hz
Theory Experiment Theory Experiment
4.4 x 2.9 0 d 0 | d 0 & 0 d
2.9 x2.9 v 0.6 -0.1 1.4 -7.9
2.9%x1.5  -0.2 3.0 1.0 -10.2
1.5x 1.5 -2.8 0.6 2.3 2.0

Table VI. Relative SPL above Rectangular Areas of Glass
Fiber over Plywood with Receiver Distance 2.7 m
and Incidence Angle 80°.

Scatterer
Dimensions o
(m) f = 1600 Hz f = 3200 Hz
Theory Experiment Theory Experiment
6.6 x 5.8 0 db 0 a 0 d 0 db
4,4 x 2.9 -0.3 -2.6 0.2 1.0
2-9 X 2'9 '1.4 “1.6 001 0

1.5 x 1.5 -2.6 0.4 0.1 -3.4




Table VII.
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.

Relative SPL above Rectangﬁlar‘Areas of Glass Fiber
over Plywood with Receiver Distance 2.7 m and
Incidence Angle 70°.

Scatterer
Dimensions
(m) f = 1600 Hz f = 3200 Hz
Theory Experiment Theory Experiment
6.6 x 5.8 0 db ¢ db 0 d 0 db
4.4 x 2.9 -0.6 -1.0 0.1 -3.0
2.9 x 2.9 0 -1.2 0.1 -4.7
1.5 x 1.5 -1.0 -2.8 -0.4 -5.4
Table VIII. Relative SPL above Rectangular Areas of Glass Fiber
over Plywood with Receiver Distance 2.6 m and
Incidence Angle 80°.
Scatterer
Dimensions
(m) f = 1600 Hz f = 3200 Hz
Theory Experiment Theory Experiment
6.6 x 5.8 0 db 0 db 0 db 0 db
4.4 x 2.9 -1.1 -10.0 0.6 -13.8
2.9 x 2.9 -1.9 -2.5 0.4 -21.8
1.5 x 1.5 -0.8 -7.5 0.2 -3.4




Table IX.

Relative SPL above Rectangular Areas of Glass Fiber
over Plywood with Receiver Distance 2.6 m and
Incidence Angle 70°.
Scatterer
Dimensions
(m) f = 1600 Hz £ = 3200 Hz
Theory  Experiment Theory  Experiment
6.6 x 5.8 0 & 0 db 0 d 0 d
4.4 x 2.9 - -0.6 5.5 0.1 -0.9
2.9 x 2.9 -0.9 5.5 0.2 -0.8
1.5 x 1.5 -0.6 6.0 -0.4 3.0

88
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Appendix A
Approximations for the Incident Pressure
and the Green's Function

It is desired to obtain an approximation for the integrand of
equation (5) in which the source and receiver distances from the
center of the scattering area are used as reference quantities,
correction terms being incorporated in the exponent in the integrand
to include diffraction effects and in the remaining factors in the
integrand to indicate additional dependences on the size of

scattering region.

In order to accomplish this, it is expedient to expand the
factors in equation (5) which involve the distances |t - r,| and
and I?p - gs[ as power series in X, and Yo yielding (to second

order),
Ir - ro] : (1l - y/r+ V/rz) (AD)

r-rlt s ol e v - 9 (A2)
~ D

with

R v(9,4) = sine (xo cos¢ + ¥, sing) (A3a)




2 2
x Y
V(6,9) = -29- a- sinze cosz¢) + 70 a- sinze sin2¢)
-1 sy sin% sinz¢ (A%)
2 OyO
X% yz
T(o . 0 . 2 2 0 2. . 2
9) = -;—(1 - 35m6c05¢)+—2—-(1 - 3sin“e sin“¢)
-3 %y sin% sinze (A3c)
2 OYO

Applying these approximations throughout equation (5) and factoring

out the constants results in an integral of the fomrm

-ikF(x_,y.)
fdso e 2 %6(x,yy) (M)

in which the abbreviations are

F o= y+wg - (V/r+V/ry) (ASa)
o+ 1[5 (e o]
r ) \r
g 1
+ [(same}s + ™, (E +E -2+ 3 BESBES) (ASb)
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and

- B cose
B = 1+i(ked)’! ; E= 2"
1l + nB cose

_ B
E=1«*-—-——-—-———1".“]3‘:osa (ASc)

Upon collecting 11ke powers of X5 Yo and introducing the change of

variables X = Zxo/L, Y = ZyO/w the expressions for F and G become:

-t
L

-8 + 8Y%) * (ay *+ VXY + X (A6)

(1 +MX +NY + QX2 + RYZ + SXY) (n - ny (A7)

@
[}

with

= (EE sing cos¢) + (same)
r2 S

WE . .
= (—-— sing sm¢) + (same)S

r 2
2 2
’%— [(1 “EB) sin e cos ¢ - E (1- Ssmze cos ¢)]Q
| r 8 ‘
1.2 1
+ ;same + Y,-I—,-(PES-Z*» -Z-EESEES) sing sine cos¢ cosd
s s
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2 —
W -2 . . E
R = (1-EB)? sin%e sin% - = (1-3sin%e sinZe) \
) 8 i
1 —\ .
+ (same ] + ;s- E+ES-2 + 7 EESBBS) sind sineS sin¢ sin<l>S
S =

r? 8 4

gk‘g sinze sin2¢ I:é E + Ll—-—E—E-)—]} + 3samei
]

W [= = 1 = . . .
+ —Z-;;-S-(E + Es -2+ 3 F‘EsBBs) siné sing. sin(¢ + ¢s)

and
¥
1 (LY[. cos
@ = E-k(w)(sme ﬂ¢ smeS sin ¢s
2
-
L 4
Kk L2 .2 cosz¢
B1 7 G \W2/[Ts L 7 SinE g2
2 s
v ol1 - sinZe o5 (A9
‘ s sin2 %s )
kLW
y = —— (rg sin’e sin2¢ + r sin’e_ sinZe )
8rr5

These expressions are to be used in equations (6)-(8).
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Plane wave diffraction by a wedge with finite impedance

Allan D. Pierce and W. James Hadden, Jr.

School of Mechanical Engineering, Georgia Institute of Technology. Atlanta, Georgia 30332

(Received 8 September 1976; revised 30 July 1977)

A theory is presented for the diffraction of acoustic waves by barriers with finite acoustical impedance,
the shape of the barriers being such that, insofar as diffraction into the shadow zone is concerned, they
may be idealized as semi-infinite wedges. The analytical development is based on the known exact
solution for plane wave diffraction by a finite impedance wedge, versions of which have been previously
given in the literature by Williams {Proc. R. Soc. London Ser. A 252, 376-393 (1959)], by Senior
[Commun. Pure Appl. Math. 12, 337-372 (1959); Proc. R. Soc. London Ser. A: 213, 436-458
(1952)], and by Maliuzhinets {Sov. Phys. Acoust. 1, 152-174, 240-248 (1955)]. This solution is
described in detail and the asymptotic limit is defived in a form which demonstrates the satisfaction of the
reciprocity principle. Practical implementation is discussed, both through numerical examples and through
the presentation of graphs of quantities which will be helpful in barrier design.

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION

While the diffraction of sound around obstacles is a
classic problem in wave theory, dating back to Poin-
care’? and Sommerfeld,® the design or assessment of
proposed designs of barriers to reduce noise levels in
areas adjacent to community noise sources is currently
a topic of considerable interest in applied acoustics, *=7
Ideally, such designs should be based on a comprehen-
sive and accurate theory of sound diffraction around
barriers. In practice, however, the inherent complexi-
ties associated with the development of such a theory
have necessitated the introduction of a variety of approx-
imations and idealizations. Because of the remanent
analytical difficulties, it is dilficult to assess the ap-
plicability of such approximations and idealizations to
actual or proposed parriers, In one of the most severe
idealizations, the barrier is assumed to be perfectly
rigid. Within the context of this idealization, it is prob-
ably fair to state that the current status of the available
theories and computation procedures is relatively satis-
factory.® Diffraction around rigid barriers with planar
surfaces can be considered using results derived from
theories based on the ideal models of thin screens,®*®
wedges, **® and trapezoidal (three-sided) barriers, %10

The rigid-barrier theories, however, give informa-
tion only on the effec’ s of barrier size, shape, and ge-
ometry on diffraction; they give no insight into the ef-
fect of the surface properties on sound levels in the
shadow zone, Conceivably, the latter should be an im-
portant consideration in barrier design, It is well
known, f(or example, that the finite impedance of the
ground may drastically alter the sound levels received
near the ground {rom a source also located near the
ground (i,e., the so-called excess ground attenuation
effect!’*" caused by the interference of direct and phase-
shifted ground reflected waves).

As regards available theories on the effect of surface
impedance on sound diffraction by barriers, the only one
specifically devoted to acoustic diffraction of which we
are aware is that of Jonasson!’ who gives anapproximate
theory of sound diffraction by a wedge of finite imped-

ance. This theory, however, applies at best only to
highly obtuse wedges, i.e,, where the exterior angle 8
is only slightly greater than 180°, Moreover, it suffers
from a lack of rigorous basis and is cumbersome to ap-
ply: a crucial set of variables is presented only pictori-
ally, Furthermore, a completely separate construction
must be performed and several variables reinterpreted
in order to show that the reciprocity principle is sat-
isfied (the point source solution should be invariant on
interchange of source and receiver locations). It is ac-
cordingly suspect, notwithstanding its good agreement
with a limited amount of field data.

There is, however, in the electromagnetic wave prop-
agation literature, an exact solution for diffraction of
plane waves by wedges of finite conductivity., Versions
of this theory have been independently given by Wil-
riams, 1¥-17 Senior, 1*!® and by Maliuzhinets,2%% (Of the
three, we have found Williams’s account®® to be the most
readable, although it suffers from a number of minor
misprints and algebraic errors.) The purpose of the
present paper is to extend and apply this theory to prob-
lems of acoustic wave diffraction by wedges of finite im-
pedance,

. STATEMENT OF PROBLEM AND SUMMARY OF
RESULTS

In this section we first describe the mathematical
model on which our analysis is founded. Immediately
following this statement of the problem, we present a
concise summary of formulas for the estimation of the
acoustic pressure diffracted around a wedge with finite
acoustic impedance. This statement of resuilts prior to
their derivation is intended to facilitate the application
of the results and to give an indication of the objective
of the theoretical development in the following sections.

A. The model

We consider sources of such an extent and/or distance
from the barrier’s tip that the incident pressure waves
may be approximated as plane waves, The geometrical
arrangement i8s depicteii in Fig, 1, the z axis of a cy~
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PLANE

WAVES LISTENER

X

FIG. 1, Diffraction of incident plane wave by wedge of finite
impedance. Listener coordinates are ». 6. 2, The wave is

incident from the 8, direction. wave-front normals make an

angle ¥ with the wedge edge (2 axis),

lindrical coordinate system is taken along thc apex of
the wedge; the surfaces of the wedge are the planes

6 =0and 6 =8, where 8 is the exterior angle of the wedge
(8>n). We consider plane waves |with time dependence
(e”'*!) suppressed throughout the analysis) incident from
the direction 6, and at an angle y with respect to the z
axis. On the surfaces =0 and 6 = 8, the acoustic im-
pedance is given in terms of a dimensionless quantity
nas

Z=pyen , (1)

where pyc is the characteristic impedance of air. This
description of the problem is amplified in Sec. II; it
should suffice however, in the explanation of the nature
of the resuits,

B. Estimated insertion loss

For purposes of barrier selection or design, it is de~
sirable to have an estimate of the effectiveness of a
barrier in reducing sound levels at a given location,
Ease of computation is certainly desirable. The model
should be a reasonable idealization of practical cases.
These conditions are fulfilled for the case of plane waves
diffracted by a nearly rigid wedge with exterior angle
B(> ) for larger observer distances r from the wedge
tip, viz., such that the condition krsiny > 1 holds (where
k=w/c), and for angles 6 considerably less than 8, »
(i.e., listener well inside the shadow zone),

The quantity of interest is the insertion loss

IL-zOIOxw(IP.. w.'/'Pvun-.l) @

which, in the case of a rigid barrier, is well described
by the formula®

IL = 101log o(kr siny) = 2010g, [ M ;1(0 = 6,) + M }(6 + 8,)]
(3
in which we have used

cos(vr) - cos(6)
) - S

and v=n/8. The principal result of this paper is that
for a hard (but not rigid) wedge, there is an additional
term in the insertion loas estimate, given by

(4)

AIL=-1010g,o{|1+540,89) ‘(nsim)]|?} ()

in which one must use

S46,6,)=2|M,(6+85)+ M(0 - 6)]" = Q= 8) = @~ 6p)

(6)
with @ (- 6) obtained from Fig. 2 or Fig. 3. Further
discussion of the function (- 6) is presented in Appen-
dix D, Several numerical examples, in which the com-
putations may be performed using modern desk calcu-
lators, are discussed in Sec, VII. The analytical steps
which intervene between Pts. A and B of this section
are discussed in the following sections,

il. FORMAL SOLUTION FOR DIFFRACTION OF
OBLIQUELY INCIDENT PLANE WAVES

In the present section, the formal solution is summa-
rized for the diffraction of obliquely incident plane waves
by a wedge of [inite acoustic impedance. This is es-
sentially the same as those solutions given previously in
the literature by Williams,*® by Senior,!® and by
Maliuzhinets, ° although with considerable changes in
nomenclature. Consistent with the discussion in Sec,
I.A, the incident plane wave is taken in the form

(7

Here 8, denotes the angular coordinate of the direction
from which the incident wave is coming, » (taken be-
tween 0 and §r) represents the angle which incident
wave-{ront normals make with the z axis; k is w/c. One
may note that the z-translational symmetry of the prob-
lem implies that the resulting solution for the acoustic
pressure should have the same z-dependent factor as in
(7) above. The dependence on # and r is governed by

the reduced wave equation

D 1ae = €xpl = ik7 simy cos(6 - 8,)lexplikz cosy) .

2 ]
[%,J;fr;‘,;%“k'sin‘}]pw. (8)
Boundary conditions at the wedge faces are that the ratio
of pressure amplitude to inward normal [fluid velocity
component amplitude be pgcn, where n, the specific (di-
mensionless) normal incidence impedance, should have
a real part greater than zero for an absorbing wedge.
{Typically its imaginary part is positive, although not
necessarily.) Thus one has

3 /80 +(sky/M)p=0,at 6=0and =4, (9)

where the upper and lower signs correspond to 6 =0 and
8, respectively,

An alternate parameter describing the wedge imped-
ance which proves to be especiaily sonvenient is that
of the (complex) angle a, defined such that

cosa = (nsim)"! (10)

and such that =} n< ap < b, a,>0 given ny > 0 and siny
positive, The sign of ay is determined [rom sgn(ay)
=sgn(n,). For a rigid wedge, n=+o, axiy, Fora
perfectly soft wedge, n=0, a—iw,

The solution for the boundary value problem as posed
above may be taken in the form of a contour integral
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S(Co"m“)z"'l(t-a)/”.(‘aov“) ] (16)

where the function H,(t,a) is delined in terms of a func-
tion F,(t) (here termed Williams' F functior in recogni-
tion of the fact that it is the same as used by Williams'®);

Flt +8=n+a) Fylt + 3+ 1 ~a)
F(t +23+a) Fyll + 28-a)

The analytic properties of the functions F %) and
HJ{t.a) are discussed extensively in Appendix A. For
angles g of the form

sz ¢, R=pn/2q

(an

Hft,a)=

with p an odd integer and p, ¢ relative primes, the func-
tion F(t) is given by

N

N
POLES — w9

w=11/2

| Fdt)= T sinf} VIt+5u(4n-l)-2p|}/

| nel

‘ H sinff |t - §n-28m+ D))} . (18)
ma0

Expressions for Fft) can be obtained for other values of
8, but at the expense of considerably more computational

|
|
|
!
| e
|
I
|
| effort. !’

|
|
f
|
f
|
|
I
|
|

That Eq, (11) is indeed the appropriate solution can
be ascertained by explicitly substituting it into Eqs. (8)
and (9) followed by some integrations by parts, The
fact that 7 is the sum of a function of ¢ -8 and a function
of { + 6 is sulficient to insure that the partial di{ferential

. 1 . equation be satisfied. The boundary conditions are sat-
. p = explikz cosy) 3 _L"‘p(' ikr siny cost) isfled by virtue of the manner in which H,(t,a) is de-
fined in terms of Willilams' F functions and of the fact
Y8, 6, addl (1) that the i's in Eq. (13) are periodic in ¢ with period

FIG. 4. Integration contours in the complex { plane for evalua-
tion of the acoustic field caused by a plane wave incident on a
- wedge of finite impedance.

where the contour C, for the { integration may be taken 28, The explicit form of the function k was chosen in
(see Fig. 4) as 'y +Cyy + Cyyy where C, is the path of conformance with notions of radiation conditions; i.e.,
steepest descents passing through the saddle point at that at large r the solution must consist of waves (other
L = 0 of the exponential [actor in the integrand, going than the incident wave) which proceed outwards [rom
from{=-}r-intof=}n+iw, Similarly, C, isthe the wedge and which do not grow exponentially with »,
path of steepest descents going from = fn+imwto =3 This requires in particular that f not have any poles

- i = through the saddle point at { =7, The contour Cyyy between (', and C,, for which the imaginary part of cost
encircles in the counterclockwise sense all poles of is positive, Since the function H(f - #, @) does not nec-
1{t, 8, 65, a) which lie in the { plane between ', and (';;.  essarily have this property, h(Z - #,68,, o) was designed
Since / (described below) is an odd function of £, the in-  to have a zero which just canceled the “forbidden™ pole
tegral on contcur C, vanishes identically, so only con- of H{L - 6,a). Also, in order that the solution repro-
tours Cy; and Cy; are of interest, duce the assumed incident wave, it was required that f

have poles at { =60 - 4, and at [ =8, -8 one of which is
enclosed by Cy,; when geometry indicates the incident
wave is present, Finally, the function was required to

The function f(f, 9, 8,, a) is of a relatively complicated
form and given by

FaS(=p~6,8,, a)h(l+8, 9, a) have residues of appropriate values at these poles such
T _ that the Cyy, integration would give a term in the ev.lua-
S(E =8, 8, @) hlE -8, By, @) (12) tion of (11) equal to (7) when geometry indicated the
with presence of the incident wave, It has been verified™
. KL, 0y, a) = (v/2) 8in(vB)V (2, f ¥ - - B) as) ":‘aotc::\lu formulation is consistent with notions of reci-
o wv(’ﬂvc) *u(ooo z LR B) p y'
Here we have abbreviated The limiting cases of rigid and soft wedges may be
. obtained by examining the limiting forms of the functions
¥, (a, b = sinl (} v)(a + )] sinl (§ v)(a - b)] Hit,a), S(t,08,,a), and A(t,6,,a). In the limit of a rig-
« }[cos(vb) - cos(va)] . (14) id wedge (o = § r), the limiting form of f(t,6,8,,a), Eq.
(12) is
ver/B . us) F(2,8,80, 1) =QuE, 0= 00) + Q,(L, 6 +8,) (19)
J 1Fylgy 2 W)= U= + t, 9
(Note that k is an even function of {.) The function S is * ’ LR
delined by with
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Q.(t,8) = vsin(vt) | cos(ve) - cos(vt)] .

Equation (19) corresponds exactly to the function used
in Bq. (1) of a previous paper® by one of the authors.
In the limit of an acoustically soft wedge (a =i =), the
function / becomes

f(£,6,60, §)=Q,(t,0-6p) - Q,(L,6+8,)
which, again, is the correct limit,

1. ASYMPTOTIC SOLUTION FOR DIFFRACTED
" WAVE

In the shadow zone, the major contribution at large
distances r [rom the edge comes from the C; portion of
the contour integral in Eq. (11). The Cyy integration
simply gives the incident wave, a specularly reflected
wave, and possibly a surface wave; the former two of
which do not exist in the shadow zone, the third of which
generally dies out exponentially with large ., The con-
tribution pp e, o from contour Cy; at large » may be ob-
tained by application of the saddle-point approximation
taking into account the possible proximity of poles and
zeros to the saddle point at £ =,

(20)

The poles of f(£.8,6,,a) are (i) those corresponding
to the incident and specularly reflected waves and (ii)
any pole of H{t - 6,a) or H{-t -6,a) which is not also
azeroof V(- -0, n/2—a-B)or ¥ (-0, 1/2-a=0),
respectively, [See Eqs. (12) and (13).]| The first cate-
gory of pole is manifested by the factor ¥,(8,,¢) in the
donominator of the definition (13). The second category
of poles may be determined with reference to Eqs. (A8);
the only ones which could conceivably be close to the
{ = 7 saddle point are where { -6 or = -6 equals 3 1
taor =lrtavd, respectively, or thus where ¢ = in
ta+9, t=3n+a+p-6. For given 6 and a, at most
one of these poles will be near the saddle point, Let
us assume that the relevant pole is at { =7+ P,; we then
set

Dy={-n-P, . (21)
Consequently, if one sets
b
(2,6, 80, 0) = —Eefefg,0) (22)

D, D, D,

where, upon rearranging the product of ¥,(6,,¢ -6) and
¥,(0y, ¢ +6) into the factors

Dy =cos(1r) - cosv(d - 8y) , (23a)

Dy = cos{vt) -~ cos(6 +8,) | (23b)

The function &(¢. 8, 6y, a) so defined will have no poles
in the vicinity of £ =7,

The analysis then proceeds, as described in Appendix
C, by replacing ¢, D,, Dy, Dy by power series expansions
to first order in (¢ - ) and integrating the resulting form
of Eq. (11) along the line of steepest descents through
the saddle point at { =n. Thus the integral on contour
Cys in Eq, (11) can be expressed in terms of standard
functions occurring in diffraction problems as

Poutte, 11 = explik(z cosy + r siny)] (e'/ 4/ V)
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X[G'"'A (T M*) + G A H(TM™) + G A K(TP,)] .

(24)
where
G = Ta S(L:?)T?:;:xl M (25)
M =M, (6~65): M =M,(0+6,) , (26)
with M'® given by Eq. (4), and
G(£,0,8,.a)=®(L,6,0p.a) (vsinvm)?® . (27

The other two coefficients of the function A 4(X) in Eq.
(24) are obtained by cyclic permutations of the quantities
M M), and P,. In the argument of A ,(X), we have
used

T ={(krsiny) n]*/? (28)

The function A x(X) which appears in Eq. (24) is the dif-
fraction integral defined in the previous paper® by

* etds

. Ye 99"

Ap(X) = 2r ), CVIX=e "% 29)
which, when X is real, can be expressed as

Ap(X) =sign(X)] £(1 X1) - igt|X])] (30)

where f(X) and g(X) are the auxiliary Fresnel functions
tabulated on pages 323-324 of the NBS Handbook of
Mathewmatical Functions.®® 1f X is not real, as would be
the case for X=TI'P,, the above would be inapplicable,
but, instead, one could write

AD(X)=(e""‘/»/-2-) m[euu(,,/z)uzx‘ (313)

or
Ap(X) == (e By ule (. 20 2 x| (31b)

which would hold for Im(e**/ *X) positive or negative, re-
spectively. The function w(2) is related to the error
function of complex argument and is tabulated on pages
325-328 of the NBS Handbook® for complex values of 2.

The calculation of the function G(, 6, 6y, @), which is
quite tedious, is sketched in Appendix C. The results
which are relevant to Eq. (25) are

G (7, 6, 65, @)= P, U6y, a) U(6, ¥) D(8, 65, 1), (32)

where
) (§) sin(é)

U8,a)= =6, %@, fr=a =P (33)
and

D(8, 6y, @) = M, (8+ 6p) + M,(6 = 6,)

cos(2va) - cos(vn)
* vsinvn (34)

In the complete asymptotic limit, where P,, M},
M{™ are all finite and T is large, A,(X) can be replaced
by (7X)"! and a considerable simplification results in
Eq. (24). Specifically, one finds

Poster, 11 = €xp [ik(2 cosy + rsiny)]
x (e¥/4/V2) (nTY1G(8, 6,, ), (35)

where
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G(0, 85,a) =G (¥, 8, 65, 0)/ P, MM, (36)

Note that, with G(%, 8, 6,, a) given by Eq. (32), the fac-
tor P, cancels out.

The symmetry of Eq. (38) with redpect to ¢ and 6, is
obvious from M,(8 - 6,) = M, (8, - 8). Thus the reciprocity
requirement is definitely satisfied. in the limit of & rigid
wedge (o ={7) one has UN6,{%) = =1 by virtue of Eqs.

(14), (1), and (AS), and D8, 6, § ¥) = M, (8 + 6,) + M, (6 = 6,).

Consequently, one has

1 1
M,(0+6,) @ M, (6= 6,

and the result for asymptotic diffraction by a rigid wedge
is recovered.

G(8, 8y, §7) = (37

Similarly, in the limit of an acoustically soft wedge,

f.e., a=in, D(9, b, a) approaches exp(-i2va)/ 2v sinvw,

¥,(7, L - a - B) approaches - } expliv(n/2 - a)l,

Hy{- b, a) approaches exp| - }i (1], s0U(8,, o) U6y, )
xD (4, by, a) approaches 2sinve sint, divided by v sinvw
or just M, (v + 6y) - M, (¥ - 65). Consequently, one has

1 _ 1
M(6-069) N ,(0+6,)

G(U, Uo, H ‘) = (38)

which, again, is the correct limit,

In addition to the above-mentioned contributions from
the integration contour C,;;, a complete description of
the pressure fleld in the shadow zone should include the
possibility of a contribution from a surface wave which
is refracted from the shadowed face of the wedge. Such
a contribution would arise from a pole enclosed by the
contour Cy;;. For 6<w and ¢, ¢+ 8, the only pole of
S, 6, 6, a) that could conceivably lie within Cy,, is at
t=in-0+6. This pole will lie within the contour only
it

{7 - ap<sin‘'(tanha,) (39)

and since in this case the imaginary part of cos(i v -
+8) is negative, by (11) the Cyy, contribution from this
pole decays exponentially with distance from the sur-
face. Furthermore, reference to Eq. (10) indicates
that the inequality (39) is not likely to be satisfied in
situations of physical interest. For these reasons we
omit an explicit description of the surface wave contri-
bution (which is included in Sec. 1V of Ref, 22).

{V. NEARLY RIGID BARRIERS

If the barrier Is nearly rigid, for n,>0 a i8 close to
{7 and one can take the solution of Eq. (10) as

ba = a > (nsiny)? (40)

Thus it would seem appropriate to expand H, (¢, o) in a
power series in } # - o, keeping up to first-order terms
in 7= a,. Inthis event ond has, from Eq. (17)

Hg(f. ﬂ)"-tnn[%l'(][h‘s.(ﬂ(%’-a)l. (“)
where
Gu) e 2l Fale s ImEE 200 '1')]
@ale) L ln["‘a(c eld=amF 0 +28=-3m) ) " (“42)
e i R e e di wne S -

Making similar expansions in Eqs. (33) and (34) the
function G(x, 6, 6;, a) in Eq. (32) may be written as

Gln, 8, bg, @)= PoIMY + My 145500, 09) (b w - )i (43)
and consequently, from Eq. (386),

1 - )
G(6, by, °)“[M.(6+vo) S TRCE a,.]"*s'("- b (b7 - a)l
: (44)
in which
5,00, 69) = 2L, (6.4 bg) + M, (6 = 6g) ! = @y~ 6) = Q- &) .
(45)

For observation angles other than ¢ =0, the diffracted
pressure field may be approximated—by combining Eqs.
(24), (25), (40), (43), and (45) —as

Portee, 11 > Xplik(z cosy +rsim )] (' 4VE)

X P M e MY A A

s YOALCME) + V' OAL(CP)] (46)
where
1
Y= T - (47
ME = MFTTP, = MET]

and the other coefficients in Eq. (46) are obtained by
cyclic permutation of MQ”, MY, and P,. Similarly, in
the complete asymptotic limit, one has

Pottr, 11,0 ™ €XPLiR(Z cO8y + 7 sim) | (' VD) (rD)!

MO+ IME Y 1+ 5,08, 80/ simy ]

- (48)
From this last expression one may obtain a correction
to the insertion loss for a hardbarrier (vis-a-vis a rigid
barrier) given by

- 1010g;0] 1+ S4(6, 6)/n sim | * dB (49)
which is just Eq. (5).

V. PRACTICAL APPLICATIONS

The formulas presented in the preceding sections
probably appear more formidable than is actually the
case. The first important point is that these results
can be used most fruitfully in the computation of barrier
insertion loss, as set forth in Eq. (2)

"“-r. =20 loﬂloqpnun ' /lphh l) .

if, as is generally true, the surface wave contribution
may be neglected, Eq. (5) provides an estimate of the
change in insertion loss, with respect to a rigid bar-
rier's effect, of a barrier with finite impedance.

The second important consideration concerns the func-
tion @,(- 8) which appears in this correction term, It is
shown in Appendix D that for angles  of the form pn/
2q, @,(- #) hus a form which is amenable to numerical
computations; in some cases computations are not so
taxing a8 to require a large computer. In practice, it
should be possible to obtain useful estimates of the in-
sertion loss (or sound pressure distribution) using a
valuc.l' of §5 of the above form, One then has |see Eq.

(D4)
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FIG, 5. The finite-impedance correction to the insertion losa
for a wedge with interior angle 10°. The surface admittance
was taken as (1'7)=0,1~i0.05. The source-receiver orienta-
tions are identified by the configuration numbers: in configura-
tion 1 the incidence direction is at 30" from the adjacent wedge
face while the receiver is at 45° from its adjacent wedge face,

0-1)/2

Q4l~ 6) = - vsinlvm) 2

1
sin[v(6 - 2n7) |sin{v]o - (2n- D) 7]}

. & sin(6 + 2mp) + sinlo + (2m +1)8]
&= “sin(6 +2mp) sinl6 + 2m + 1)B]  °

(50)

For angles ¢ of the form 6 =kn/2q, k an integer less
than or equal to p, there is a singlular term in each sum
- in Eq. (50). A straightforward expansion of the two
terms reveals that they combine so that Q,(-6) is in
fact regular. Difficulties in numerical computations
may be avoided by avoiding such angles.

A more detailed investigation of the cases in which
the receiver angle 6 is very small or the source angle
6y approaches 8 reveals that @,(- 6) becomes

Qs(-8) >Qy(~ B+8) >(sind)!, 6<1, (51)

Since Q,(- 6)/(nsiny) serves as a first-order correction
term to the rigid-wedge limit for H,(~ 6) [see Eq. (41)],
the behavior of @, exhibited in Eq. (51) indicates that
the approximation in Eq. (41) is not useful for situations
in which the incidence or receiver directions are at
small angles 8 with respect to a wedge face. This be-
havior is a manifestation of the familiar phenomenon

of the vanishing effective surface impedance for plane
waves at grazing incidence.?' This is borne out by in-
spection of Eq. (A3): Substituting in the appropriate
values for { and a, one has

R[8,} 7 - (nsiny)?]~R[B - 6,1 7 - (nsiny)!]

N { tan( v8) - tan(v/2n siny) (52)
tan( v8) + tan(v/2n siny)

for the plane wave reflection coefficient at each face.
For a given value of n, the reflection coefficient ap-
proaches -1 as 8 goes to zero. These considerations
indicate that useful estimates of the insertion logss cor-
rection can be obtained for 8nsiny > 1.

o e o
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As an alternate aid to applications of these results,
we have computed Q,(~ 6) for a number of values of 8
and 6. These are presented in Fig. (2). In addition,
these curves are plotted again, with 8 appearing as the
independent variable, 6 as a parameter, in Fig. (3),
Thus one has the option of using one of the “speciui”
values of 8 to approximate a desired wedge or of using
values for the desired wedge angle for a selection set
of angles 6.

As an illustration of the use of these results we have
calculated the correction to the insertion loss via Eq.
(5) for perpendicular incidence (¥ =4 7) on wedges with
exterior angles 8 =350° and 240° for a surface admit-
tance 77! =0.1 -{0.05, which is representative of turf
at 1000 Hz.® Values for the function @ were obtained
from Figs. 2 and 3. Insertion-loss corrections are
presented in Figs. § and 6 for several incidence and
observation angles,

In the case of the acute-angled wedge, the surface im-
pedance has a small effect—less than 3 dB. For the
obtuse-angled wedge, the effect from considering the
finite acoustic impedance is on the order of 6 dB when
both source and receiver are at fairly small angles with
respect to their adjacent sides of the wedge. Thus con-
sideration of the finite impedance seems to be of con-
siderably greater significance for obtuse wedges than
for acute ones, especially since in many practical real-
izations of the obtuse wedge model the sources and re-
ceivers are close to the surface.

VI. CONCLUSION

A theoretical analysis has been presented for the dif-
fraction of plane waves by a wedge of arbitrary surface
impedance. Particular attention has been given to the
pressure field in the shadow zone for large distances
from this tip of the wedge. The results presented here
make use of simplifications that result for a large num-
ber of special wedge angles. In a detailed discussion of

RECEIVER
.- 3.4
- 12
4
2,37,
’I
l /’
ry
SOURCE
CONFIGURATION | 2 ) 4
AL (d®) 6 46 18 6

FIG, 6, The finite-Impedance correction to the ingertion loss
for a wedge with interior angle 120° and surface admittance
(1.m=0,1+40,05, Source and receiver orlentations are
labelled as In Fig, 5.
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the nearly rigid wedge a correction to the insertion loss
of a rigid wedge has been obtained, Numerical computa-
tions indicate a significant effect of finite surface im-
pedance for obtuse wedges with source and/or receiver
at a fairly small angle with respect to the plane of the
wedge face. In addition, the solution presented here
should provide a good point of departure for the analysis
of diffraction by spherical waves or by broad barriers.
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APPENDtX A: DISCUSSION OF THE F AND H
FUNCTIONS

The F function F,(f) appearing in Eq. (17) is defined
such that it satisfied the two recurrence relations

Folt +28) =Fy@)tan[it -3 m)] | (Ala)
Falt +28) =Fy(~¢) , (Alb)

and such that it is analytic and has no poles or zeros in
the strip 0< {5 <28, the function asymptotically approach
ing zero as {;~:=. Explicit expressions for this func-
tion for some particular values of 3 are given in Appen-
dix B.

Since F,(t) has no zeros or poles in the strip (0, 28)
it follows from Eqs. (Al) that its zeros must be at

t=p: B n+p+K) (A2a)
while its poles are at
t=Rx(in+p+K) , (A20)

where K =2nm+2mg 20, n and m being arbitrary non-
negative integers. (Of course, there is the possibility
that a pole location may coincide with a zero location,
in which case the function will have neither a pole nor
a zero at the point in question.) Examination of the
locations of the poles and zeros of the function {sin{(}v)
x(¢ +3m] Fot + m}?, reveals that these are identical to
those given above, so one may infer that F,(t) has the

property

Fi) Fylt +1) = sl

where A, is some number independent of { (the precise

value of which {8 immaterial). It then follows from this
and Eq. (A2b) that the asymptotic values of F,(t) should
be

Fy(t)=Azet®/ % (Ada)
~iAqe w/eR === (A4b)

Analogous relations may be deduced for the H,({, a)
function starting from the definition of Eq. (17). It sat-

J

(A3)

‘l"”

Fy(6)= IL (x = Fgln, m))[x+ F:(n, m)] /II° [x = Fy(n, m))[x+ Fy(m, m)] .

isfies recurrence relations of the form

Hyt,0) __ [sin(vr) - cos(va)]
Hy(~¢, a) sin(vt) + cos(va)

tanl(ill)__jr+a)l
Ttan[G )@ +in-0)l

Ht-ga) o

Hy & - B @) (A5)

where R({, @) may be interpreted as a plane wave re-
flection coefficient. The zeros of H,({, a) are at

t==-Braz(3n+8+K)

and

(A6a)

(Aéb)

any sign combinatim being a possibility, while its poles
are at

t=-Braz(3a+p+K)

{=tm-a)tGa+B+K)

(A7a)
and
(A7b)

=0, m= 0. Also, it follows

t=t(r-a)x(im+8+K)

for, again, K=2nm+2m§p, n
from Eq. (A3) that

Hy(C, a) Hy(L + 1, a)

_sin{ivlic+ 0+ v sin{ivic e m - al}

A
cos v |3(t- 1) +a[icoslii]3(¢+ 3m)-al} a8

APPENDIX B: THE FUNCTION F,(§) FOR
PARTICULAR VALUES OF THE WEDGE
ANGLE g

The function F,(w) defined in Eq. (32) of Williams’
paper'® fails to exhibit the proper asymptotic behavior
in the limit as a-i=, e.g., it does not obey our Eq.
(A4). Accordingly, we describe here the construction
of our function F,({) for § = p1/2q, with p an odd integer,
¢ an integer. We shall include two examples for wedge
angles of particular physical interest.

We begin by recalling from Eq. (A2a) that the function
F4(t) has zeros at the values

t-B=:(}n+B+K) (B1)

which, for the‘particular values of 8 under consideration
here, may be written as

(2¢/8)(E-pn/2q) =2 (p+3q+ 4nq+2m[:)lg Fg(n,m). (B2)

Simnilarly, Fy(¢) has poles at (see Eq. (A2))
(-B=2(}7+B+K) (B3)

which in turn may be written as

29/ (L = pa/2¢) =% (P+ g+ dng+ 2mp)uy Fy(n, m). (B4)

We may use Eqs. (B2) and (B4) to represent the function
F, (£) schematically by
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There are several relationships between the pole and zero locations, Fgz(n, m) and F,(n, m), which are important in
the development of Fy({). They are

Fen+d(p=1), m-q)=F,(n. m), (B6)
Fy(n, m)=F(-n+}{(p-1), -m=1-g¢), and (B7
Fyin+p,m=2q)=F,(n, m) (B8)
Substituting Eq. (B8) into Eq. (B5), with appropriate changes of limits, yields
ro= L TTix- 5o mlixs £y, m) / UL LT (x= Ay, )4 Fytn, ). (89)
Reel/2(0=1)  maq ne0 med
After canceling out the common factors, we have
-1 - e g
Fy(0) = [[ “ [x =~ Fy(n, )] [x+ Fy(n, m)l/ [T 1] Lx=Fyon, Ml [x+ Fy(m, m)}. ' (B10)
neal /2(Pel) maq me0
We next apply Eq. (B7) to the {x+ Fy(n, m)] factors in Eq. (B10) and rearrange the factors to obtain
ot - ﬁ A2ee1) - el 1/2(p=1) =(eol)
= = Fy(n, ’ - - f}
Fy(£) n--ulzltr-u !1 [x=F,(n, m)] Y . “II [x=F,n m)]/ “ Il [x = Fy(n, m)] H ll [x = Fy(n,m)] (B11)
which becomes, after use of Eq. (B8) and further adjustment of the product limits,
-1 - o -1 o gl «1/8(pet) u-1
For= |1 I1(x-Fn ml n [1 (x=Fyn, m)]/[[ [1ix- R, m) I [l (x-Fn,ml. ®12)
neel /2(Po1) Mue neel/2(Pel) ma—m m0 ma0 ne == me)
Note that the numerator of Eq. (B12) may be consolidated to read
-y -
vm= [ [ (x-Fyn, m)l/ n[x Fyln, m)}. (B13)
fnael/2(P=1) Me-e Ae=l/2(P=1) Mel

Similar treatment of the denominator of Eq. (B12) yields a form similar to Eq. (B13), but with the limits, | n| =
0<m=q-1. Thus we have the final schematic representation for F,({)

Fy(¥) = I‘I [T (x-F,, M)]/II [I(x-Fyn,ml . (B14)
Reel/ 2(Pe)) maow mel neew
A specific functional form for F,({) which satisfies all the requirements of zero and pole locations is

el

Fy(t) = II sin(n/2p)[x=-p- (4n+1)ql/nam [x-p-@m+1)pl, (B15)

na=1/2(p=1)
where we have used the definition of F,(n, m), Eq. (A4). Finally, making the substitution, x=(2q/%)({ - pn/2¢), and
simplifying, we obtain

1/200-1)

-1
Fy (2= H sin{(¢/p)¢ - ﬂ+(ﬂq/2p)(4n-l)]/h sin(ig - {5 (pn/2g)(m+1)]. (B186)
fte msd

i
We conclude by quoting two examples for particular APPENDIX C: ASYMPTOTIC APPROXIMATION
wedge angles 8 which are of physical interest, First OF 7({,0,0,,a)

for the right-angle wedge, B = i, Eq. (B16) yields:
In obtaining an approximation for the function f(¢, 6,

Foa(0) = - V2 cos(}i) ) 6, @) in the vicinity of the saddle point at { = n, the
/8 = gtndt)+ cos( ) (B17) quantities D,, D, D, and &(t, 6, 6, a) in Eqs. (23)-(25)
are expanded in powers of ({ - 7) to yleld
Secondly, for the cblique wedge, 3=57/4, we find

f(:’ 8, gy a)=
(B18) 1
where we have used M{*' = M,(6 + 8o) and M{™’ = M, (8 = 2,),
Other wedge angles may be treated with greater effort, with M, given in Eq. (5), while
It is noteworthy, however, that the expression we have . o(t, 6,0, a
obtained for F,(t) is considerably simpler than that ob- G(t, 0,0y, a)= W (c2)
tained by Williams. It may be verified readily that Eq.

(B16) exhibits the correct asymptotic limits prescribed is assumed to be expanded in a power series in{ - v up
by Eq. (A4). to first ordcr in(f - w).

VZ{cos(is)-cos(in)]

Fyera(8) = “[T+cos(3t)+sin(3¢)]

J. Acoust. Soc. Am., Vol. 63, No. 1, January 1978
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As regards the actual integration, one replaces cost
by = 1+(})(¢ - »)* in the exponential factor of Eq. (11)
and integrates along the line of steepest descent of the
approximate integrand, i.e., along a line going oblique-
ly downwards making an angle of 45° with the real axis
and passing through the saddle point at . The integra-
tion variable is charged to s, given by

(t-9)= @/krsiny)t/tgeie/s

the s integration now going from - = to <, The approx-
imate factor for f is also replaced by means of the al-
gebraic identity

w+ XS _ 1 [w+xa
T Bl -%) (e

+two additional terms obtained by
cyclic permutation of a,b, and c.

This yields the asymptotic approximation to the dif-
fracted pressure field, Eq. (24).

It is now necessary to obtain a suitable expression for
G(t,6,6, a). By comparing Eqs. (12) and (22) and their
associated definitions, one may obtain an explicit rep-
resentation for ¢

_ 2y 8in(vg)D
0(:9 av 901 a)' wy(‘t -9,%7" Q- ﬁ);’j(- 90’—(,)
x [, (89, £ + 8)0y = ¥, (85, ¢ = 8)0;] , (C4)
where

$1,=V{eL 6,27~ a =Byt ~6,0) . (cs)

Now, by using Eqs. (A8) and (14) in Eq. (C5) and per-
forming several trigonometric manipulations, one may
obtain
1 Vo (t ¥6 =37, a)
== F1a 2%

¢‘z 4 H(st =6Fma)V (t30=miv=a=3)
Then after substituting Eqs. (C8) into Eq. (C4), the re-
sult into Eq. (C2), and expanding and recombining the
terms

¥, (69, L+ 0)¥y,(k ~0 =47 0a) =V (0, =80V (L +6=4n,0)

(ce)

and using the definition
{ sinve

U(e, G)'”'(_a' G)'Ei?'d'—ﬂ) (o))
one has finally

C(l’, 8,8y, a)= P.U(ev G)U(ooo G)D(av O¢r a) (Cﬁ)
with
X8, g, @) = M, (0 + 6g) + M,(6 = 6g) + “'(t":&('”:‘,"(""

(co)

which completes the outline of the analysis leading to
Eqs. (32)-(34).

APPENDIX D: THE FUNCTION Q,({) FOR
PARTICULAR ANGLES §
The function Q,(t) is defined in Eq. (42) as

Fyt+ B+ in)F(L+ 28+ v)].

- 3
Q'(t)’im[h +B=3)F(L+28~3%7x (1)

J. Acoust. 8oc. Am., Vol. 83, No. 1, Janusry 1978

It serves ar a corection term in the function Hy(¢) for
nearly rigid wedges. Since the function F,(t) takes on a
simple form for angles 8 of the form px/27, it is rea-
sonable to expect that @,(2) might also be cast in a rela-
tively simple form in the same instances.

One begins by noting that from Eq. (B18) one has
1/249=1)

InFy(t) = Z In{sin{iv|t =28+ L7(4n=1)]})

«!
- Z; In(sin{}[¢ - $ 7= 28(m+ 1)]}) (D2)
and thus
1/2(p=1)

d%mr,(;): v 2 corlbule - 2p+ daton - D))

[
- % % cotlile - x-20ms D]} (DY)

Then upon substiiution of Eq. (D3) into Eq. (D1), con-
solidation of arguments of the several cotangents, and
use of the identity

sin(s, ¢ 0,)
cotg, £ cot(s,) = ——-‘—1—81 n9, 5ind, -
followed by the use of trigonometric angle-addition re-
lationships, one may obtain
1/2591)

- 1
Q) =-veinen) T e )

:\:' sin(¢ - 2mg) + sint = §(2m + 1))
= £ sin(t —2m@)sin[t - pi2m+ 1))

It should be pointed out that for ¢ = - £/2q, with & a posi
tive integer less than p, there is one singular term in
each sum in Eq. (D4). It can be shown, however, that
the two singular terms combine in such a way that 6(:)
is continuous at the apparent singularity. For { =0,
there is a true singularity in @,. In this case one may
see from Eq. (41) that this singularity is cancelled by
the tan(}ut) factor in H, to give

(D4)

") s
”‘(ol a ) 2', Glny
for a’ =4n=(nsiny)"*, which indicates the manner in
which the rigid wedge limit of H,(0, a) is approached as
the impedance n becomes infinite. Similar behavior may
be noted for ¢ == 3.

(D5)
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Chapter 6

EFFECTS OF AMBIENT FLOW AND
DISTRIBUTED SOURCES

Diffraction in the Pressure of Ambient Flow

The model sketched in Fig. 1 may be used to assess the
effects of ambient flow on barrier diffraction. The barrier
is taken as a thin screen which occupies the region x <0 of
the y =0 plane; the edge of the screen lies along the z axis.
The source is taken as being localized as a point XgrYgsZg
where Ys <0, the listener is at (xL,yL,zL). A uniform ambient
flow of velocity U, is in the +x direction, tangential to the
screen and having the same velocity on both sides of the
screen. Since the screen is idealized as being arbitrarily
thin, there is no discontinuity in U, at the edge.

The solution for plane wave diffraction in terms of such

1,2

a model has previously been given by Candel. Here, a

slightly different approach is used for the case when the inci-
dent wave ensues from a point source.

If one limits one's consideration to a single frequency
iwt

component and uses the device of taking e’ to describe the
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time dependence, then the complex amplitudes of the acoustic

field variables satisfy the equations
: 2 >
[-iw + U a/3x]p/c™ + o veu = 0 - (1a)

(1b)

L}
o

pol-iw + Uja/ax]u + vp

everywhere except in the immediate vicinity of the source.
From these one may derive the generalization of the scalar

Helmholtz equation which takes ambient flow into account, i.e.,

£1(p} = 0 (2)

£ = v% - P -iw + Uga/ex) (3

There is a transformation3 which, for Uo/c< 1, will reduce
equation (2) to one resembling the scalar Helmholtz equation
without ambient flow, i.e.,

£1p =

. 2
e-1(Mm/c)x/B £2{p e

i(Mm/c)x/Bz; 4)

where

M = U,/c (5)

is the Mach number, and
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g = [1- M31/2 (6)

£, = ax/e)? v 2yl + a%/az? « w/e)¥rt ()

Consequently, one may conclude that any solution of Eq.

(2) corresponding to a given angular frequency w may be taken

as
-3 2 . .

p(X,y,z,0) = e r(Mu/CIX/BT 500 5 5 5 (8)
where

X = x/B (9a)

y =y (9b)

2 = 2z (9¢)

o = w/8 (94d)
and

(827082 + 3%/352 + 3%/322 + (6/0)%1p = O (10)

The latter is the scalar Helmholtz equation corresponding to

no ambient flow. ,

For the screen diffraction problem, one requires that

u, = 0 at y = 0 for x<0. Consequently, from Eq. (1b), ap/dy

should also be zero for the same circumstances. However, one
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sees from Eq. (8) that this requires
ap/ay = 0 y =0, X <0 (11)

which is the same boundary condition as one would have in the
absence of ambient flow. Also, if the source is at XgsYgrZgs
then p should correspond to a field generated by a source at

is,is,is. Consequently, one concludes that the solution of

£’1p = -4n5(x,y,z) (12)

subject to the boundary condition mentioned above may be taken

as
i (Mw/C) (x_-x)/8°
p .‘[[fe ° S(xo,yo,zo)G(x/e,y,z|x0/8, o,zolu/B)dxodyodzo
(13)

where G(x,y,zlxo,yo,zolw) is the Green's function for the
scalar Helmholtz equation in the absence of ambient flow,

satisfying
(v + /) 216(x,y,2[x0,Yg0z0lu) = -4ns(X - X5) (14)

In the case S(x,y,z) is taken as Sos(i - is), the above reduces

to
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i (Mu/)(xg- x) /82
p=e G(x/8,y,2lxg/8,Ygr2g]|0/8) (15)

which may be considered as the Green's function for the
problem of diffraction of waves by a thin screen in the

presence of ambient flow.

Effect of Ambient Flow on Insertion Loss

The Green's function without ambient flow included is
described in some length in Chapter 1 of the present report
and the fact that it is amenable to numerical computation
implies that the problem discussed above is also. Here, for
simplicity, we limit our discussion to the circumstances
described by Fig. 2. The Green's function in the absence of
ambient flow for such circumstances is given by the Fresnel

number approximation

ikL _i=/
G = % f,z_ A)f([zml“) . ig([zm”z)( (16a)
ikL s
= fl 3(1/2) - NY/2 e""“f N<<1 (16b)
ikL in/4
+ & e Ns>>1 (16¢)
L Zlelz

where N is the Fresnel number given by
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o) an
where 1 = 2¢/k and
L= [y - 29t (1 + 102112 (18a)
R = [0 - xd% + O - yg)? + (7 - 2212 (18b)
r, = (Xf + yf 12, rg = (xg + yg)llz (18¢c)

The functions f and g are the auxiliary Fresnel functions

tabulated in the NBS Handbook of Mathematical Functions.4
For most purposes, the asymptotic limit (16c) may be con-
sidered as realized when (ZN)l/2 >2 or N> 2.

The insertion loss due to the barrier is defined as the
loss in decibels of the sound pressure level at the listener
location due to the presence of the barrier and, for waves

from a point source, is accordingly
IL = 10 log;y|Gyp/Ggl? (19)

where GNB and Gg are the Green's function without and with
the barrier present, respectively, Thus, in the absence of

ambient flow and in the Fresnel number approximation, one has
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. IL = -10 logm{(l/Z)(R/L)z [fz([ZN]l/z) . Gz([ZNll/z)]}
(20)
Furthermore, for circumstances allowing the Fresnel number
approximation, it is a good approximation also to set the

factor R/L ~ 1, so one has

IL

-10 1og10{(1/z)[f2([2m”2) + gzctzm”z)]} (21)

L2

20 logyo2[1 + (2N)1/2] N << 1
20 log, a2 * 1/2
8102 *+ [20/an 10](2N) N <<1

6 + (12.3)N/2 dB N <<1 (22)

o

+

10 log;g(4xN) = 16 + 10 logjg N N>>1 (23)

which is a monotomically increasing function of Fresnel num-
ber only.

According to the analysis of the preceding section the
magnitude of a Green's function when ambient flow is present
is that of the Green's function when ambient flow is not
present providing one lets x-+x/8, w-+w/8, xsl-xs/s in the

o arguments of the latter. (This is téue regardless of whether
or not the barrier is present.) Consequently, the above

approximate expressions for the insertion loss will still
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apply to the case when there is an ambient flow, providing the

Fresnel number is similarly transformed, i.e.,
NOxLsYpez 1 Xgaygazg]w)

-+ N(XL/B’yL’lexS/B’yS’zSI“’/B) (24)

In general, the ratio of the transformed and untransformed
Fresnel numbers is spatially dependent. However, for the
case when lyL/xL|<<1 and lys/xS|<<1, one has

roos |y, + x2/2 | (25a)

L YLt Xy

s = Iy + xi/2y| (25b)

2 2
(rp 2 19)? = O e xfrayy - yg - xdr2yg)

* Ly by v Byg - <yl (26)

(yp - vg) [xglys - Xf/yL]
2[(2, - 2924 (7, - y) 1172

(27a)

L » [(ZL - zs)z + (YL - YS)Z]I/Z -

(xg - xp)

2 [(ZL - zs)z + ()'L - Ys) 2]1/2

R [z - 2902 0y -y Y120

(27b)
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and, consequently, -

) - (YL/YS)xé - (YS/YL) xf + ZXSXL

L-R = (27¢)
2]1/2

2 [(ZL - zs)z + (YL - Ys)

(Here, it should be recalled that the source and listener are
presumed to be on opposite sides of the barrier, so YL and Ys
have opposite signs. Consequently, the above gives L-R>0,
as must be the case.)

The above expression for L - R is bilinear in Xxq and Xy
so with the substitutions xg+Xxg/8, yg+>Yyg/B one has
L-R~(L-R)/8%. Also the substitution w~+uw/8 causes

A/2+81r/2. Consequently, in the case described above

N » N/g3

Since 8 = (1 -M?‘)l/2 is less than 1, the transformed Fresnel
number is larger than that corresponding to no flow. The
insertion loss with ambient flow present is then given by

Eqs. (21,22,23) only with N replaced by N/B3 so one has in

particular
IL ~ 6+ (12.3)N1/2/53/2 N<<l (28a)
2,3
IL = 10 log,,(4n2N/8%) N>>1 (28b)

In summary, the insertion loss is increased when there

is an ambient flow, the increase being independent
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of the direction of the flow. For larger values of the
Fresnel number, the effect of ambient flow is to add an additional

increment to the insertion loss of

a(IL) = 10 logyqy[1/(1 - M%)3/2 (29)

If the Mach number is 0.5, for example, the additional

insertion loss is 1.9 dB.

Green's Function for Source Near Edge

In Chapter 3, one of the limiting cases examined was
that of a thin screen (v =1/2) when rrS/L2+0, krsr/L finite.
This includes the case shown in Fig. 3 when the listener is
many wavelengths from the diffracting edge and when the source
is much closer to the edge than is the listener. However, the
source is not presumed to be either very close or very far
from the edge relative to a wavelength. The Green's function
for this case can be constructed easily by the principle of
reciprocity from Sommerfeld's known exact solution for the
diffraction of an incident plane wave by a thin screen. (This
was pointed out to one of the authors by Donald Lansing.)
The result, for the case when the listener is in the shadow

zone, is that the Green's function is given by

-e-ikl.. ei‘ll/4

C= 7 75

[£(X) -ig(X)]
= 19'95‘
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+ [£(X) -ig(X)] (30)
g=0+ GS
with
X = [8rrg/aL) /% |cos(c/2) | (31)

The functions f(X) and g(X) are the auxiliary Fresnel functions
described in the previous section. This Green's function may
also be modified to take into account the presence of ambient
flow by use of the transformation described previously.

The fact that the above Green's function covers cases
when Tg is very close and not so close to the edge, that it
is easily computed, and that it may be easily extended to
include ambient flow suggests that it may be useful in studies
of the diffraction of engine noise around wings while an air-

plane is in flight.

Sound from Distributed Sources

In order to illustrate the application of the general
theory to sound diffraction from a distributed source (Fig. 4),
one may take, for simplicity, all the sources to be along the
far side of the screen with 8¢ = 2n in each case and to each
have zg =0 (i.e., the sources lie along a line transverse to
the edge of the screen). The listener is considered also to

have z coordinates equal to 0 and we consider r>>Tg such that




SCREEN

r >>rs

kr >>

Fig. 3.

118

SOURCE
Az

DIFFRACTED WAVE
PATH

LISTENER

Limiting case of listener many wavelengths from
edge of thin screen.
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we may approxiﬂate L by r except in the exponent where it is
taken as r+rg. In this manner, G reduces to

ilkr+ /4
gk /4l {f(BrS/A]l/Z cos[6/21)

r

G=* /2

ikrs

- ig([8rg/2]1/? cos[e/Z])} e (32)

If the source strength per unit length is taken as
§(rs) for a given frequency component, then the corresponding
complex pressure amplitude in the far field is given by super-
position as

o . /T %l[kr+"/4][o [ - ig]§(rs) elkrs i, (33

Here, for simplicity, we assume the source does not extend
beyond the "trailing' edge, so all of the received sound is
diffracted.

For simplicity, we also assume the spatial extent of the
source is somewhat less than a wavelength of the radiated
sound such that we may approximate f, g and e1krS by

appropriate truncated power series expansions. If we do so,

we have

ekT ) 1/2 in/4
~1ln
p =2 T A [1/2 -(4rS/A) cos(8/2)e ]
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. §(rsj [1+ikrg - (1/z)k2r§] drg (34)

One of the interesting aspects of the above is that the

diffraction could enhance the received sound at low frequencies.

Suppose, for example, that the source were a quadrupole (e.g.,

as for jet noise) such that

f§(rs)drs = frsé(rs)drs = 0 | (35)
Then the expression for p would reduce to

ikr
p = -(1/4)k% < rés (rg)drg

kr

o/l e cos(e/Z)e-i"Mfré/z §(rg)drg

(36)

The first term is weakened at low frequencies by the presence
of the k% factor while the second has a factor of k1/2 which
may be larger when the frequency is low. The first term,
incidentally, is just the sound field expected in the absence
of the screen. [Time limitations, unfortunately, have pre-
cluded a more thorough investigation of the question of
whether diffraction could actually enhance the sound of a
distributed source which tends to radiate as a quadrupole in

the absence of a barrier.]
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