2,780 research outputs found

    Theory and applications of supercycled symmetry-based recoupling sequences in solid-state NMR

    No full text
    We present the theoretical principles of supercycled symmetry-based recoupling sequences in solid-state magic-angle-spinning NMR. We discuss the construction procedure of the SR26 pulse sequence, which is a particularly robust sequence for double-quantum homonuclear dipole-dipole recoupling. The supercycle removes destructive higher-order average Hamiltonian terms and renders the sequence robust over long time intervals. We demonstrate applications of the SR26 sequence to double-quantum spectroscopy, homonuclear spin counting, and determination of the relative orientations of chemical shift anisotropy tensors

    Fidelity, dynamic structure factor, and susceptibility in critical phenomena

    Get PDF
    Motivated by the growing importance of fidelity in quantum critical phenomena, we establish a general relation between fidelity and structure factor of the driving term in a Hamiltonian through a newly introduced concept: fidelity susceptibility. Our discovery, as shown by some examples, facilitates the evaluation of fidelity in terms of susceptibility using well developed techniques such as density matrix renormalization group for the ground state, or Monte Carlo simulations for the states in thermal equilibrium.Comment: 4 pages, 2 figures, final version accepted by PR

    A note on Zolotarev optimal rational approximation for the overlap Dirac operator

    Full text link
    We discuss the salient features of Zolotarev optimal rational approximation for the inverse square root function, in particular, for its applications in lattice QCD with overlap Dirac quark. The theoretical error bound for the matrix-vector multiplication Hw(Hw2)1/2Y H_w (H_w^2)^{-1/2}Y is derived. We check that the error bound is always satisfied amply, for any QCD gauge configurations we have tested. An empirical formula for the error bound is determined, together with its numerical values (by evaluating elliptic functions) listed in Table 2 as well as plotted in Figure 3. Our results suggest that with Zolotarev approximation to (Hw2)1/2 (H_w^2)^{-1/2} , one can practically preserve the exact chiral symmetry of the overlap Dirac operator to very high precision, for any gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references added, to appear in Phys. Rev.

    High energy neutrinos from neutralino annihilations in the Sun

    Full text link
    Neutralino annihilations in the Sun to weak boson and top quark pairs lead to high-energy neutrinos that can be detected by the IceCube and KM3 experiments in the search for neutralino dark matter. We calculate the neutrino signals from real and virtual WW, ZZ, Zh, and ttˉt \bar t production and decays, accounting for the spin-dependences of the matrix elements, which can have important influences on the neutrino energy spectra. We take into account neutrino propagation including neutrino oscillations, matter-resonance, absorption, and nu_tau regeneration effects in the Sun and evaluate the neutrino flux at the Earth. We concentrate on the compelling Focus Point (FP) region of the supergravity model that reproduces the observed dark matter relic density. For the FP region, the lightest neutralino has a large bino-higgsino mixture that leads to a high neutrino flux and the spin-dependent neutralino capture rate in the Sun is enhanced by 10^3 over the spin-independent rate. For the standard estimate of neutralino captures, the muon signal rates in IceCube are identifiable over the atmospheric neutrino background for neutralino masses above M_Z up to 400 GeV.Comment: 45 pages, 18 figures and 5 tables, PRD versio

    CP asymmetry in the Higgs decay into the top pair due to the stop mixing

    Full text link
    We investigate a potentially large CP violating asymmetry in the decay of a neutral scalar or pseudoscalar Higgs boson into the top-anti-top pair. The source of the CP nonconservation is the complex mixing in the (left-right) stop sector. One of the interesting consequence is the different rates of the Higgs boson decays into CP conjugate polarized states.Comment: 14 pages, 8 figures include

    Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

    Get PDF
    The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion

    Accuracy of Semiclassical Methods for Shape Invariant Potentials

    Get PDF
    We study the accuracy of several alternative semiclassical methods by computing analytically the energy levels for many large classes of exactly solvable shape invariant potentials. For these potentials, the ground state energies computed via the WKB method typically deviate from the exact results by about 10%, a recently suggested modification using nonintegral Maslov indices is substantially better, and the supersymmetric WKB quantization method gives exact answers for all energy levels.Comment: 7 pages, Latex, and two tables in postscrip

    A practical implementation of the Overlap-Dirac operator

    Full text link
    A practical implementation of the Overlap-Dirac operator 1+γ5ϵ(H)2{{1+\gamma_5\epsilon(H)}\over 2} is presented. The implementation exploits the sparseness of HH and does not require full storage. A simple application to parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes related to topology are exactly reproduced on the lattice.Comment: Y-axis label in figure correcte
    corecore