1,196 research outputs found
Useful applications of earth-oriented satellites - Systems for remote-sensing information and distribution, panel 8
Problems and potential use of data gathered by remote sensing from satellites or aircraf
Discovering Valuable Items from Massive Data
Suppose there is a large collection of items, each with an associated cost
and an inherent utility that is revealed only once we commit to selecting it.
Given a budget on the cumulative cost of the selected items, how can we pick a
subset of maximal value? This task generalizes several important problems such
as multi-arm bandits, active search and the knapsack problem. We present an
algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween
items, expressed as a kernel function. GP-Select uses Gaussian process
prediction to balance exploration (estimating the unknown value of items) and
exploitation (selecting items of high value). We extend GP-Select to be able to
discover sets that simultaneously have high utility and are diverse. Our
preference for diversity can be specified as an arbitrary monotone submodular
function that quantifies the diminishing returns obtained when selecting
similar items. Furthermore, we exploit the structure of the model updates to
achieve an order of magnitude (up to 40X) speedup in our experiments without
resorting to approximations. We provide strong guarantees on the performance of
GP-Select and apply it to three real-world case studies of industrial
relevance: (1) Refreshing a repository of prices in a Global Distribution
System for the travel industry, (2) Identifying diverse, binding-affine
peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale
recommender system by recommending items to users
Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator
We show that the properties of the electron beam and bright x-rays produced
by a laser wakefield accelerator can be predicted if the distance over which
the laser self-focuses and compresses prior to self-injection is taken into
account. A model based on oscillations of the beam inside a plasma bubble shows
that performance is optimised when the plasma length is matched to the laser
depletion length. With a 200~TW laser pulse this results in an x-ray beam with
median photon energy of \unit[20]{keV}, photons above
\unit[1]{keV} per shot and a peak brightness of \unit[3 \times
10^{22}]{photons~s^{-1}mrad^{-2}mm^{-2} (0.1\% BW)^{-1}}.Comment: 5 pages, 4 figure
Modified Thomson spectrometer design for high energy, multi-species ion sources
A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection
Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses
In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration
Spectral modification of laser-accelerated proton beams by self-generated magnetic fields
Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction
Buffered high charge spectrally-peaked proton beams in the relativistic-transparency regime
- …
