16,300 research outputs found

    Apparatus for changing the orientation and velocity of a spinning body traversing a path Patent

    Get PDF
    Development of method and apparatus for spinning satellite about selected axis after reaching predetermined orientatio

    How do random Fibonacci sequences grow?

    Full text link
    We study two kinds of random Fibonacci sequences defined by F1=F2=1F_1=F_2=1 and for n1n\ge 1, Fn+2=Fn+1±FnF_{n+2} = F_{n+1} \pm F_{n} (linear case) or Fn+2=Fn+1±FnF_{n+2} = |F_{n+1} \pm F_{n}| (non-linear case), where each sign is independent and either + with probability pp or - with probability 1p1-p (0<p10<p\le 1). Our main result is that the exponential growth of FnF_n for 0<p10<p\le 1 (linear case) or for 1/3p11/3\le p\le 1 (non-linear case) is almost surely given by 0logxdνα(x),\int_0^\infty \log x d\nu_\alpha (x), where α\alpha is an explicit function of pp depending on the case we consider, and να\nu_\alpha is an explicit probability distribution on \RR_+ defined inductively on Stern-Brocot intervals. In the non-linear case, the largest Lyapunov exponent is not an analytic function of pp, since we prove that it is equal to zero for 0<p1/30<p\le1/3. We also give some results about the variations of the largest Lyapunov exponent, and provide a formula for its derivative

    Training a perceptron in a discrete weight space

    Full text link
    On-line and batch learning of a perceptron in a discrete weight space, where each weight can take 2L+12 L+1 different values, are examined analytically and numerically. The learning algorithm is based on the training of the continuous perceptron and prediction following the clipped weights. The learning is described by a new set of order parameters, composed of the overlaps between the teacher and the continuous/clipped students. Different scenarios are examined among them on-line learning with discrete/continuous transfer functions and off-line Hebb learning. The generalization error of the clipped weights decays asymptotically as exp(Kα2)exp(-K \alpha^2)/exp(eλα)exp(-e^{|\lambda| \alpha}) in the case of on-line learning with binary/continuous activation functions, respectively, where α\alpha is the number of examples divided by N, the size of the input vector and KK is a positive constant that decays linearly with 1/L. For finite NN and LL, a perfect agreement between the discrete student and the teacher is obtained for αLln(NL)\alpha \propto \sqrt{L \ln(NL)}. A crossover to the generalization error 1/α\propto 1/\alpha, characterized continuous weights with binary output, is obtained for synaptic depth L>O(N)L > O(\sqrt{N}).Comment: 10 pages, 5 figs., submitted to PR

    Spin-1 gravitational waves

    Get PDF
    Gravitational fields invariant for a 2-dimensional Lie algebra of Killing fields [ X,Y] =Y, with Y of light type, are analyzed. The conditions for them to represent gravitational waves are verified and the definition of energy and polarization is addressed; realistic generating sources are described.Comment: 18 pages, no figures. A section on possible sources has been added. Version accepted for publication in Int. J. Mod. Phys.

    Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes

    Get PDF
    We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion

    A WZW model based on a non-semi-simple group

    Full text link
    We present a conformal field theory which desribes a homogeneous four dimensional Lorentz-signature space-time. The model is an ungauged WZW model based on a central extension of the Poincar\'e algebra. The central charge of this theory is exactly four, just like four dimensional Minkowski space. The model can be interpreted as a four dimensional monochromatic plane wave. As there are three commuting isometries, other interesting geometries are expected to emerge via O(3,3)O(3,3) duality.Comment: 8 pages, phyzzx, IASSNS-HEP-93/61 Texable versio

    Robustness of Sound Speed and Jet Quenching for Gauge/Gravity Models of Hot QCD

    Full text link
    We probe the effectiveness and robustness of a simple gauge/gravity dual model of the QCD fireball that breaks conformal symmetry by constructing a family of similar geometries that solve the scalar/gravity equations of motion. This family has two parameters, one of which is associated to the temperature. We calculate two quantities, the speed of sound and the jet-quenching parameter. We find the speed of sound to be universal and robust over all the geometries when appropriate units are used, while the jet-quenching parameter varies significantly away from the conformal limit. We note that the overall structure of the jet-quenching depends strongly on whether the running scalar is the dilaton or not. We also discuss the variation of the scalar potential over our family of solutions, and truncate our results to where the associated error is small.Comment: 21 pages, 9 figures, LaTeX. v2:references added, minor correction to speed of sound; conclusions unchange

    On a class of invariant coframe operators with application to gravity

    Get PDF
    Let a differential 4D-manifold with a smooth coframe field be given. Consider the operators on it that are linear in the second order derivatives or quadratic in the first order derivatives of the coframe, both with coefficients that depend on the coframe variables. The paper exhibits the class of operators that are invariant under a general change of coordinates, and, also, invariant under the global SO(1,3)-transformation of the coframe. A general class of field equations is constructed. We display two subclasses in it. The subclass of field equations that are derivable from action principles by free variations and the subclass of field equations for which spherical-symmetric solutions, Minkowskian at infinity exist. Then, for the spherical-symmetric solutions, the resulting metric is computed. Invoking the Geodesic Postulate, we find all the equations that are experimentally (by the 3 classical tests) indistinguishable from Einstein field equations. This family includes, of course, also Einstein equations. Moreover, it is shown, explicitly, how to exhibit it. The basic tool employed in the paper is an invariant formulation reminiscent of Cartan's structural equations. The article sheds light on the possibilities and limitations of the coframe gravity. It may also serve as a general procedure to derive covariant field equations
    corecore