18,486 research outputs found
Effects of local reinforcement on nozzles in dished ends
The results of a parametric design study, to determine the optimum diameter of reinforcing pad for nozzles in the knuckle region of an ellipsoidal pressure vessel head are presented herein. The study utilised a linear elastic finite element model, created using ANSYS finite element analysis software. Nozzle parameters of diameter, offset, and wall thickness were varied to ensure the results obtained were achieved through a thorough analysis. Optimum pad sizes were obtained for thrust, in plane moment and out-of-plane moment nozzle loads. Design curves were produced, allowing maximum permitted applied stress, to be calculated for any nozzle size subject to one of the three loading conditions. Recommendations for allowable offset and treatment of loading combinations are also presented
Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates
Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain
Meltwater Intrusions Reveal Mechanisms for Rapid Submarine Melt at a Tidewater Glacier
Submarine melting has been implicated as a driver of glacier retreat and sea level rise, but to date melting has been difficult to observe and quantify. As a result, melt rates have been estimated from parameterizations that are largely unconstrained by observations, particularly at the near-vertical termini of tidewater glaciers. With standard coefficients, these melt parameterizations predict that ambient
melting (the melt away from subglacial discharge outlets) is negligible compared to discharge-driven melting for typical tidewater glaciers. Here, we present new data from LeConte Glacier, Alaska, that challenges this paradigm. Using autonomous kayaks, we observe ambient meltwater intrusions that are ubiquitous within 400 m of the terminus, and we provide the first characterization of their properties, structure, and distribution. Our results suggest that ambient melt rates are substantially higher (×100) than standard theory predicts and that ambient melting is a significant part of the total submarine melt flux. We explore modifications to the prevalent melt parameterization to provide a path forward for improved modeling of ocean-glacier interactions.This work was funded by NSF OPP Grants 1503910, 1504191, 1504288,
and 1504521 and National Geographic Grant CP4-171R-17. Additionally, this research was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) under award #NA18NWS4620043B. These observations would not be possible without the skilled engineering team who developed the autonomous kayaks—including Jasmine Nahorniak, June Marion, Nick McComb, Anthony Grana, and Corwin Perren—and also the Captain and crew of the M/V Amber Anne. We thank Donald Slater and an anonymous reviewer for valuable feedback that improved this manuscript. Data availability: All of the oceanographic data collected by ship and kayak have been archived with the National Centers for Environmental Information (Accession 0189574, https://accession.nodc.noaa.gov/ 0189574). The glacier data have been archived at the Arctic Data Center (https://doi.org/10.18739/A22G44).Ye
Finite element analysis applied to redesign of submerged entry nozzles for steelmaking
The production of steel by continuous casting is facilitated by the use of refractory hollow-ware components. A critical component in this process is the submerged entry nozzle (SEN). The normal operating conditions of the SEN are arduous, involving large temperature gradients and exposure to mechanical forces arising from the flow of molten steel; experimental development of the components is challenging in so hazardous an environment. The effects of the thermal stress conditions in relation to a well-tried design were therefore simulated using a finite element analysis approach. It was concluded from analyses that failures of the type being experienced are caused by the large temperature gradient within the nozzle. The analyses pointed towards a supported shoulder area of the nozzle being most vulnerable to failure and practical in-service experience confirmed this. As a direct consequence of the investigation, design modifications, incorporating changes to both the internal geometry and to the nature of the intermediate support material, were implemented, thereby substantially reducing the stresses within the Al2O3/graphite ceramic liner. Industrial trials of this modified design established that the component reliability would be significantly improved and the design has now been implemented in series production
Ecosystems with mutually exclusive interactions self-organize to a state of high diversity
Ecological systems comprise an astonishing diversity of species that
cooperate or compete with each other forming complex mutual dependencies. The
minimum requirements to maintain a large species diversity on long time scales
are in general unknown. Using lichen communities as an example, we propose a
model for the evolution of mutually excluding organisms that compete for space.
We suggest that chain-like or cyclic invasions involving three or more species
open for creation of spatially separated sub-populations that subsequently can
lead to increased diversity. In contrast to its non-spatial counterpart, our
model predicts robust co-existence of a large number of species, in accordance
with observations on lichen growth. It is demonstrated that large species
diversity can be obtained on evolutionary timescales, provided that
interactions between species have spatial constraints. In particular, a phase
transition to a sustainable state of high diversity is identified.Comment: 4 pages, 4 figure
Tracking icebergs with time-lapse photography and sparse optical flow, LeConte Bay, Alaska, 2016–2017
We present a workflow to track icebergs in proglacial fjords using oblique time-lapse photos
and the Lucas-Kanade optical flow algorithm. We employ the workflow at LeConte Bay, Alaska, where we ran five time-lapse cameras between April 2016 and September 2017, capturing more than 400 000 photos at frame rates of 0.5–4.0 min−1. Hourly to daily average velocity fields in map coordinates illustrate dynamic currents in the bay, with dominant downfjord velocities (exceeding 0.5 m s−1 intermittently) and several eddies. Comparisons with simultaneous Acoustic Doppler Current Profiler (ADCP) measurements yield best agreement for the uppermost ADCP levels (∼ 12 m and above), in line with prevalent small icebergs that trace near-surface currents. Tracking results from multiple cameras compare favorably, although cameras with lower frame rates (0.5 min−1) tend to underestimate high flow speeds. Tests to determine requisite temporal and spatial image resolution confirm the importance of high image frame rates, while spatial resolution is of secondary importance. Application of our procedure to other fjords will be successful if iceberg concentrations are high enough and if the camera frame rates are sufficiently rapid (at least 1 min−1 for conditions similar to LeConte Bay).This work was funded by the U.S. National Science Foundation (OPP-1503910, OPP-1504288, OPP-1504521 and OPP-1504191).Ye
Relative entropy in 2d Quantum Field Theory, finite-size corrections and irreversibility of the Renormalization Group
The relative entropy in two-dimensional Field Theory is studied for its
application as an irreversible quantity under the Renormalization Group,
relying on a general monotonicity theorem for that quantity previously
established. In the cylinder geometry, interpreted as finite-temperature field
theory, one can define from the relative entropy a monotonic quantity similar
to Zamolodchikov's c function. On the other hand, the one-dimensional quantum
thermodynamic entropy also leads to a monotonic quantity, with different
properties. The relation of thermodynamic quantities with the complex
components of the stress tensor is also established and hence the entropic c
theorems are proposed as analogues of Zamolodchikov's c theorem for the
cylinder geometry.Comment: 5 pages, Latex file, revtex, reorganized to best show the generality
of the results, version to appear in Phys. Rev. Let
Solution of the X-ray edge problem for 2D electrons in a magnetic field
The absorption and emission spectra of transitions between a localized level
and a two-dimensional electron gas, subjected to a weak magnetic field, are
calculated analytically. Adopting the Landau level bosonization technique
developed in previous papers, we find an exact expression for the relative
intensities of spectral lines. Their envelope function, governed by the
interaction between the electron gas and the core hole, is reminescent of the
famous Fermi edge singularity, which is recovered in the limit of a vanishing
magnetic field.Comment: 4 pages, 1 figur
Pain control in healthcare organizations: Developing effective disease management programs
Although medicine possesses the knowledge and technology for preventing or relieving most pain, poor pain control is still widespread. Unrelieved pain causes unnecessary suffering and increases health care expenditures. Among the barriers to improving pain control are poor provider education in pain management, misguided beliefs about the inevitability of pain and the dangers of pain medication, provider resistance to changing practice patterns, and administrative resistance to implementing improvements that incur short-term costs but lead to long-term savings. In short, poor pain relief in America\u27s health care institutions is a system issue, and improvement requires a system-wide change. An effective program for improving pain management requires a multidisciplinary team committed to the task, ideally a triad consisting of a physician, a nurse, and a pharmacist. The triad needs administrative support in order to undertake needs assessment, offer provider and patient education, and perform continuous cycles of assessment, intervention, and reassessment of pain management. A strong information management base and an analytic engine are essential so that the team can evaluate outcomes from multiple perspectives (provider, payer, patient). The triad should identify a service area with clear pain problems, demonstrate improvements in this area, and then systematically move to other service areas. Educating providers and patients about pain and its control is essential for bringing about change. Improved pain management is a win-win situation for patients and institutions alike. Patients and families benefit from reduced suffering and improved quality of life, while institutions can offer more cost-effective care to patients
Modular Invariance of Finite Size Corrections and a Vortex Critical Phase
We analyze a continuous spin Gaussian model on a toroidal triangular lattice
with periods and where the spins carry a representation of the
fundamental group of the torus labeled by phases and . We find the
{\it exact finite size and lattice corrections}, to the partition function ,
for arbitrary mass and phases . Summing over phases gives
the corresponding result for the Ising model. The limits and
do not commute. With the model exhibits a {\it vortex
critical phase} when at least one of the is non-zero. In the continuum or
scaling limit, for arbitrary , the finite size corrections to are
{\it modular invariant} and for the critical phase are given by elliptic theta
functions. In the cylinder limit the ``cylinder charge''
is a non-monotonic function of that ranges from
for to zero for .Comment: 12 pages of Plain TeX with two postscript figure insertions called
torusfg1.ps and torusfg2.ps which can be obtained upon request from
[email protected]
- …
