292,473 research outputs found
Detectors and Concepts for sub-100 ps timing with gaseous detectors
We give a short compendium of the main ongoing detectors and concepts capable
of performing accurate sub-100 ps timing at high particle fluxes and on large
areas, through technologies based on gaseous media. We briefly discuss the
state-of-the-art, technological limitations and prospects, and a new bizarre
idea
Modelling of Electroluminescence in Polymers Using a Bipolar Charge Transport Model
Electroluminescence (EL) in polymeric materials is thought to occur due to the energy dissipation process from the recombination of opposite polarity charge carriers. It is considered as an indication of storage and transport of charge carriers in cable insulation subject to electrical stresses and may indicate the change in charge movement due to aging or degradation processes. Under ac electric fields, the interaction of opposite polarity charge carriers at the interface of polymer/conductor is enhanced compared with dc conditions, and seems to contribute a lot to the electroluminescence rather than the charge behaviours in the bulk of polymers. The dynamics of charge carriers both at the interface of polymer/conductor and in the bulk of polymers is investigated through a simulation work using a bipolar charge transport model. Figure 1 compares experimental electroluminescence results with simulated data from the recombination of injected charge carriers. The paper will give more details on EL model and comparison under various waveforms and frequencies
Constraints on kHz QPO models and stellar EOSs from SAX J1808.4-3658, Cyg X-2 and 4U 1820-30
We test the relativistic precession model (RPM) and the MHD Alfven wave
oscillation model (AWOM) for the kHz QPOs by the sources with measured NS
masses and twin kHz QPO frequencies. For RPM, the derived NS mass of Cyg X-2
(SAX J1808.4-3658 and 4U 1820-30) is 1.96 +/- 0.10 solar masses (2.83 +/- 0.04
solar masses and 1.85 +/- 0.02 solar masses), which is 30% (100% and 40%)
higher than the measured result 1.5 +/- 0.3 solar masses (< 1.4 solar masses
and 1.29 + 0.19 / - 0.07 solar masses). For AWOM, where the free parameter of
model is the density of star, we infer the NS radii to be around 10 - 20 km for
the above three sources, based on which we can infer the matter compositions
inside NSs with the help of the equations of state (EOSs). In particular, for
SAX J1808.4-3658, AWOM shows a lower mass density of its NS than those of the
other known kHz QPO sources, with the radius range of 17 - 20 km, which
excludes the strange quark matter inside its star.Comment: 6 pages, 3 figures, 2 table
Ground state energy of unitary fermion gas with the Thomson Problem approach
The dimensionless universal coefficient defines the ratio of the
unitary fermions energy density to that for the ideal non-interacting ones in
the non-relativistic limit with T=0. The classical Thomson Problem is taken as
a nonperturbative quantum many-body arm to address the ground state energy
including the low energy nonlinear quantum fluctuation/correlation effects.
With the relativistic Dirac continuum field theory formalism, the concise
expression for the energy density functional of the strongly interacting limit
fermions at both finite temperature and density is obtained. Analytically, the
universal factor is calculated to be . The energy gap is
\Delta=\frac{{5}{18}{k_f^2}/(2m).Comment: Identical to published version with revisions according to comment
How Many Cooks Spoil the Soup?
In this work, we study the following basic question: "How much parallelism
does a distributed task permit?" Our definition of parallelism (or symmetry)
here is not in terms of speed, but in terms of identical roles that processes
have at the same time in the execution. We initiate this study in population
protocols, a very simple model that not only allows for a straightforward
definition of what a role is, but also encloses the challenge of isolating the
properties that are due to the protocol from those that are due to the
adversary scheduler, who controls the interactions between the processes. We
(i) give a partial characterization of the set of predicates on input
assignments that can be stably computed with maximum symmetry, i.e.,
, where is the minimum multiplicity of a state in
the initial configuration, and (ii) we turn our attention to the remaining
predicates and prove a strong impossibility result for the parity predicate:
the inherent symmetry of any protocol that stably computes it is upper bounded
by a constant that depends on the size of the protocol.Comment: 19 page
Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida
Surface temperatures derived from HCMM data were compared with to those obtained by GOES satellite and the apparent thermal inertia (ATI) calculated. For two dates, the HCMM temperatures appear to be about 5 C lower than the GOES temperatures. The ATI for excessively-drained to well-drained mineral soils was greater than for drained organic soils possibly because of long periods of low rainfall during late 1980 and early 1981. Organic soils cropped to sugar cane showed lower ATI after a severe killing freeze. With dead leaves, there was less transpiration and more solar radiation probably reached the dark soil surface. This would explain the larger diurnal temperature amplitude observed
- …
