20 research outputs found

    Phytol: A review of biomedical activities

    Get PDF
    © 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (Auguist 2018) in accordance with the publisher’s archiving policyPhytol (PYT) is a diterpene member of the long-chain unsaturated acyclic alcohols. PYT and some of its derivatives, including phytanic acid (PA), exert a wide range of biological effects. PYT is a valuable essential oil (EO) used as a fragrance and a potential candidate for a broad range of applications in the pharmaceutical and biotechnological industry. There is ample evidence that PA may play a crucial role in the development of pathophysiological states. Focusing on PYT and some of its most relevant derivatives, here we present a systematic review of reported biological activities, along with their underlying mechanism of action. Recent investigations with PYT demonstrated anxiolytic, metabolism-modulating, cytotoxic, antioxidant, autophagy- and apoptosis-inducing, antinociceptive, anti-inflammatory, immune-modulating, and antimicrobial effects. PPARs- and NF-κB-mediated activities are also discussed as mechanisms responsible for some of the bioactivities of PYT. The overall goal of this review is to discuss recent findings pertaining to PYT biological activities and its possible applications

    CRISPR/Cas9: transcending the reality of genome editing

    Get PDF
    With the expansion of the microbiology field of research, a new genome editing tool arises from the biology of bacteria that holds the promise of achieving precise modifications in the genome with a simplicity and versatility that surpasses previous genome editing methods. This new technique, commonly named CRISPR/Cas9, led to a rapid expansion of the biomedical field; more specifically, cancer characterization and modeling have benefitted greatly from the genome editing capabilities of CRISPR/Cas9. In this paper, we briefly summarize recent improvements in CRISPR/Cas9 design meant to overcome the limitations that have arisen from the nuclease activity of Cas9 and the influence of this technology in cancer research. In addition, we present challenges that might impede the clinical applicability of CRISPR/Cas9 for cancer therapy and highlight future directions for designing CRISPR/Cas9 delivery systems that might prove useful for cancer therapeutics

    Restoring the p53 'Guardian' Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9

    No full text
    With an increasing prevalence in the human population, cancer has become one of the most investigated fields of medicine. Among the potential targets for cancer therapy is the tumor suppressor gene TP53, which is found in a mutated state in approximately 50% of human cancers and is often associated with poor prognosis. We propose a novel, highly tumor-specific delivery system for TP53, based on the CRISPR/Cas9 genome editing technology. This system will restore the normal p53 phenotype in tumor cells by replacing the mutant TP53 gene with a functional copy, leading to sustained expression of p53 protein and tumor regression

    The extensive role of miR-155 in malignant and non-malignant diseases

    No full text
    MicroRNAs (miRNAs) have rapidly emerged as key molecules in cancer initiation and development, showing the capability to regulate pivotal oncogenic pathways. MiR-155 has gathered an increased attention especially in oncology, but also in non-malignanat pathologies. Nowadays, this noncoding RNA is one of the most important miRNAs in cancer, due to the extensive signaling network associated with it, implication in immune system regulation and also deregulation in disease states. Therefore, numerous research protocols are focused on preclinical modulation of miR-155 for therapeutic purposes, or investigation of its dynamic expression for diagnostic/prognostic assessments, with the final intention of bringing this miRNA into the clinical setting. This review comprehensively presents the extended role of miR-155 in cancer and other pathologies, where its expression is dysregulated. Finally, we assess the future steps toward miR-155 based therapeutics

    Cancer mechanisms and emerging therapies

    No full text
    Over the last decades, cancer has become one of the most relevant health issues at a worldwide level [...

    The "good-cop bad-cop" TGF-beta role in breast cancer modulated by non-coding RNAs

    No full text
    Background: Lack of early diagnosis methods and the development of drug resistance are among the main reasons for increased mortality rates within breast cancer patients. These two aspects are governed by specific pro-carcinogenic modifications, where TGB\u3b2-induced EMT is one of the leading actors. Endowment of the epithelial cells with mesenchymal characteristics allows them to migrate and invade secondary tissues in order to form malignant sites and also confers chemoresistance. TGF\u3b2 which role switches from the tumor suppressor cytokine to the oncogenic one favoring the tumor microenvironment regulates this process. Scope of review: This review aims to comprehensively present the updated TGF\u3b2-induced EMT in breast cancer, including the regulatory role of the non-coding RNAs with focus on the miR-200 family and newly discovered lncRNAs such as HOTAIRM1. Additionally, a new phenotype, P-EMT, also modulated by miR-200 and miR-34 families that form complex feedback loops with TGF\u3b2, SNAI1 and ZEB1/2 is presented under an updated form. Major conclusions: The hallmarks of EMT are becoming increasingly associated with aggressive forms of breast cancer and low survival rates among patients. Considering that this phenotypical switch can trigger drug resistance, invasion and metastasis, inhibition of EMT could represent an important milestone in mammary cancer treatment. General significance: The present review assembles the most recent data regarding TGF\u3b2 induced EMT, including the input of non-coding RNAs, contributing to the possible development of new targeted treatment strategies for cancer patients

    Macrophages Interaction and MicroRNA Interplay in the Modulation of Cancer Development and Metastasis

    No full text
    Advancement in cancer research has shown that the tumor microenvironment plays a crucial role in the installation, progression, and dissemination of cancer cells. Among the heterogeneous panel of cells within the malignant microenvironment are tumor-associated macrophages that are sustaining the malignant cells through strict feedback mechanisms and spatial distribution. Considering that the presence of metastasis is one of the main feature associated with decreased survival rates among patients, in the present article we briefly present the involvement of tumor-associated macrophages in the hallmarks of metastasis and their microRNA-related regulation with a focus on lung cancer in order to coordinate the vast information under one pathology. As shown, these cells have emerged as coordinators of immunosuppression, angiogenesis and lymphangiogenesis, vessel intravasation and extravasation of cancer cells, and premetastatic niche formation, transforming the macrophages in potential therapeutic targets and also prognostic markers according to their density within the tumor and polarization phenotype. An indirect therapeutic approach on tumor-associated macrophages can be also represented by regulation of microRNAs involved in their polarization and implicit oncogenic features. Examples of these microRNAs consist in the highly studied miR-21 and miR-155, but also other microRNA with less feedback in the literature: miR-1207-5p, miR-193b, miR-320a, and others

    Beyond conventional: The new horizon of anti-angiogenic micrornas in non-small cell lung cancer therapy

    No full text
    GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors\u2014the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs\u2014MMP-2, MMP-7, MMP-9) and hypoxia\u2014and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics\u2014bevacizumab, ramucirumab and nintedanib\u2014are briefly summarized through the lens of evidence-based medicine
    corecore