78 research outputs found

    Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water.

    Get PDF
    We investigated the evidence of a familial contribution to urinary methylation patterns in families ingesting arsenic in drinking water. Arsenic methylation can be assessed by measuring urinary levels of inorganic arsenic (InAs) and its methylated metabolites, monomethylarsonate (MMA), and dimethylarsinate (DMA). Methylation activity is reflected in the ratios: InAs/methylated arsenic (InAs/metAs) and MMA/DMA. Eleven families from Chile were selected because of their long-term exposure to very high levels of arsenic in drinking water (735-762 microg/L). Each family consisted of a father, a mother, and two children. We measured urinary arsenic and its methylated metabolites for each participant (n = 44). The intraclass correlation coefficients showed that 13-52% of the variations in the methylation patterns were from being a member of a specific family. Family correlations were calculated for father-mother, parent-child, and sibling-sibling pairs. Methylation patterns correlated strongly between siblings [r = 0.78 for InAs/metAs, 95% confidence interval (CI), 0.34-0.94; r = 0.82 for MMA/DMA, 95%CI, 0.43-0.95] compared to lower correlations in father-mother pairs (r = 0.18, r = -0.01, respectively), after adjustment for total urinary arsenic, age, and sex. Family correlations were not notably altered when adjustments were made for specific blood micronutrients (methionine, homocysteine, folate, vitamin B6, selenium, and vitamin B12 potentially related to methylation. We also report on a family pedigree with high prevalence of arsenic-induced effects. Participants from this family had low InAs/metAs values, which is consistent with increased toxicity of trivalent methylated arsenic species. Despite our small sample size, we observed that methylation patterns aggregate in families and are correlated in siblings, providing evidence of a genetic basis for the variation in arsenic methylation. Larger studies with more extensive pedigrees will need to be conducted to confirm these findings

    Gastric adenocarcinoma in a patient re-infected with H. pylori after regression of MALT lymphoma with successful anti-H. pylori therapy and gastric resection: a case report

    Get PDF
    BACKGROUND: Helicobacter pylori (H. pylori) has been etiologically linked with primary gastric lymphoma (PGL) and gastric carcinoma (GC). There are a few reports of occurrence of both diseases in the same patient with H. pylori infection. CASE PRESENTATION: We report a patient with PGL in whom the tumor regressed after surgical resection combined with eradication of H. pylori infection. However, he developed GC on follow up; this was temporally associated with recrudescence / re-infection of H. pylori. This is perhaps first report of such occurrence. CONCLUSIONS: Possible cause and effect relationship between H. pylori infection and both PGL and GC is discussed. This case also documents a unique problem in management of PGL in tropical countries where re-infection with H. pylori is supposed to be high

    Role and Mechanism of Arsenic in Regulating Angiogenesis

    Get PDF
    Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS) generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF). Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future

    The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drinking water contaminated with inorganic arsenic is associated with increased risk for different types of cancer. Paradoxically, arsenic trioxide can also be used to induce remission in patients with acute promyelocytic leukemia (APL) with a success rate of approximately 80%. A comprehensive study examining the mechanisms and potential signaling pathways contributing to the anti-tumor properties of arsenic trioxide has not been carried out.</p> <p>Methods</p> <p>Here we applied a systems biology approach to identify gene biomarkers that underlie tumor cell responses to arsenic-induced cytotoxicity. The baseline gene expression levels of 14,500 well characterized human genes were associated with the GI<sub>50</sub> data of the NCI-60 tumor cell line panel from the developmental therapeutics program (DTP) database. Selected biomarkers were tested <it>in vitro</it> for the ability to influence tumor susceptibility to arsenic trioxide.</p> <p>Results</p> <p>A significant association was found between the baseline expression levels of 209 human genes and the sensitivity of the tumor cell line panel upon exposure to arsenic trioxide. These genes were overlayed onto protein-protein network maps to identify transcriptional networks that modulate tumor cell responses to arsenic trioxide. The analysis revealed a significant enrichment for the oxidative stress response pathway mediated by nuclear factor erythroid 2-related factor 2 (NRF2) with high expression in arsenic resistant tumor cell lines. The role of the NRF2 pathway in protecting cells against arsenic-induced cell killing was validated in tumor cells using shRNA-mediated knock-down.</p> <p>Conclusions</p> <p>In this study, we show that the expression level of genes in the NRF2 pathway serve as potential gene biomarkers of tumor cell responses to arsenic trioxide. Importantly, we demonstrate that tumor cells that are deficient for NRF2 display increased sensitivity to arsenic trioxide. The results of our study will be useful in understanding the mechanism of arsenic-induced cytotoxicity in cells, as well as the increased applicability of arsenic trioxide as a chemotherapeutic agent in cancer treatment.</p

    Microbial arsenic transformations: towards cause and mitigation of the arsenic problem

    No full text
    Not AvailableNot AvailableNot Availabl

    Review on arsenic contamination in inland open water ecosystems.

    No full text
    Not AvailableNot AvailableNot Availabl

    Effect of drinking arsenic-contaminated water in children

    No full text
    Chronic arsenic toxicity due to drinking of arsenic-contaminated water has been a major environmental health hazard throughout the world including India. Although a lot of information is available on health effects due to chronic arsenic toxicity in adults, knowledge of such effect on children is scanty. A review of the available literature has been made to highlight the problem in children. Scientific publications on health effects of chronic arsenic toxicity in children with special reference to psychological issues are reviewed. The prevalence of skin abnormalities such as pigmentation change and keratosis, the diagnostic signs of chronic arsenic toxicity, vary in various arsenic-exposed children population in different regions of the world. The occurrence of chronic lung disease including pulmonary interstitial fibrosis has been described in arsenic-exposed children in Chile. Affection of intellectual function has also been reported to occur in arsenic-exposed children studied in Thailand, Bangladesh, and India. Methylation patterns of arsenic in children aggregate in families and are correlated in siblings, providing evidence of a genetic basis for the variation in arsenic methylation. Chronic arsenic toxicity due to drinking of arsenic-contaminated water causes significant morbidity in children resulting in skin lesions, lung disease, and defect in intellectual function
    corecore