1,365 research outputs found

    CCRS proposal for evaluating LANDSAT-D MSS and TM data

    Get PDF
    Accomplishments in the evaluation of LANDSAT 4 data are reported. The objectives of the Canadian proposal are: (1) to quantify the LANDSAT-4 sensors and system performance for the purpose of updating the radiometric and geometric correction algorithms for MSS and for developing and evaluating new correction algorithms to be used for TM data processing; (2) to compare and access the degree to which LANDSAT-4 MSS data can be integrated with MSS imagery acquired from earlier LANDSAT missions; and (3) to apply image analysis and information extraction techniques for specific user applications such as forestry or agriculture

    Report on the selection of the reference XT-ADS target design and specifications

    Get PDF
    The XT-ADS is an experimental accelerator driven system (ADS) that is being developed in the framework of the European FP6 EUROTRANS project. In this deliverable, the specifications of the spallation target and the selection of its reference design are discussed. Justification of the design options, in relation to the performance requirements of the XT-ADS and the interlinking with the design of the sub-critical core and the primary system, are given

    Evaluating LANDSAT-4 MSS and TM data

    Get PDF
    Interband line pixel misregistrations were determined for the four MSS bands of the Mistassini, Ontario scene and multitemporal registration of LANDSAT-4 products were tested for two different geocoded scenes. Line and pixel misregistrations are tabulated as determined by the manual ground control points and the digital band to band correlation techniques. A method was developed for determining the spectral information content of TM images for forestry applications

    CCRS proposal for evaluating LANDSAT-4 MSS and TM data

    Get PDF
    The measurement of registration errors in LANDSAT MSS data is discussed as well as the development of a revised algorithm for the radiometric calibration of TM data and the production of a geocoded TM image

    Relativistic BB84, relativistic errors, and how to correct them

    Full text link
    The Bennett-Brassard cryptographic scheme (BB84) needs two bases, at least one of them linearly polarized. The problem is that linear polarization formulated in terms of helicities is not a relativistically covariant notion: State which is linearly polarized in one reference frame becomes depolarized in another one. We show that a relativistically moving receiver of information should define linear polarization with respect to projection of Pauli-Lubanski's vector in a principal null direction of the Lorentz transformation which defines the motion, and not with respect to the helicity basis. Such qubits do not depolarize.Comment: revtex

    Improved modelling of helium and tritium production for spallation targets

    Full text link
    Reliable predictions of light charged particle production in spallation reactions are important to correctly assess gas production in spallation targets. In particular, the helium production yield is important for assessing damage in the window separating the accelerator vacuum from a spallation target, and tritium is a major contributor to the target radioactivity. Up to now, the models available in the MCNPX transport code, including the widely used default option Bertini-Dresner and the INCL4.2-ABLA combination of models, were not able to correctly predict light charged particle yields. The work done recently on both the intranuclear cascade model INCL4, in which cluster emission through a coalescence process has been introduced, and on the de-excitation model ABLA allows correcting these deficiencies. This paper shows that the coalescence emission plays an important role in the tritium and 3He^3He production and that the combination of the newly developed versions of the codes, INCL4.5-ABLA07, now lead to good predictions of both helium and tritium cross sections over a wide incident energy range. Comparisons with other available models are also presented.Comment: 6 pages, 9 figure

    KINEROS2-AGWA: Model Use, Calibration, and Validation

    Get PDF
    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire

    Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton

    Get PDF
    AbstractThe mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GβL proteins [1–3] to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum[4], STE20p from S. pombe[5], and AVO3p from S. cerevisiae[6, 7]. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1 [6]. Consistent with this finding, the rictor-containing mTOR complex contains GβL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C α (PKCα) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals
    corecore