693 research outputs found

    Extended geometry and gauged maximal supergravity

    Get PDF
    We consider generalized diffeomorphisms on an extended mega-space associated to the U-duality group of gauged maximal supergravity in four dimensions, E_7. Through the bein for the extended metric we derive dynamical (field-dependent) fluxes taking values in the representations allowed by supersymmetry, and obtain their quadratic constraints from gauge consistency conditions. A covariant generalized Ricci tensor is introduced, defined in terms of a connection for the generalized diffeomorphisms. We show that for any torsionless and metric-compatible generalized connection, the Ricci scalar reproduces the scalar potential of gauged maximal supergravity. We comment on how these results extend to other groups and dimensions.Comment: 41 pages. v2,v3: minor changes and references adde

    AdS Vacua, Attractor Mechanism and Generalized Geometries

    Full text link
    We consider flux vacua attractor equations in type IIA string theory compactified on generalized geometries with orientifold projections. The four-dimensional N=1 superpotential in this compactification can be written as the sum of the Ramond-Ramond superpotential and a term described by (non)geometric flux charges. We exhibit a simple model in which supersymmetric AdS and Minkowski solutions are classified by means of discriminants of the two superpotentials. We further study various configurations without Ramond-Ramond flux charges. In this case we find supersymmetric AdS vacua both in the case of compactifications on generalized geometries with SU(3) x SU(3) structures and on manifolds with an SU(3)-structure without nongeometric flux charges. In the latter case, we have to introduce correction terms into the prepotential in order to realize consistent vacua.Comment: 35 pages, accepted version in JHE

    New families of interpolating type IIB backgrounds

    Get PDF
    We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are T^2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either N=2 or N=1 supersymmetry. In the N=2 case it can be shown that the solutions are regular.Comment: 20 page

    Effective actions and N=1 vacuum conditions from SU(3) x SU(3) compactifications

    Get PDF
    We consider compactifications of type II string theory on general SU(3) x SU(3) structure backgrounds allowing for a very large set of fluxes, possibly nongeometric ones. We study the effective 4d low energy theory which is a gauged N=2 supergravity, and discuss how its data are obtained from the formalism of the generalized geometry on T+T*. In particular we relate Hitchin's special Kaehler metrics on the spaces of even and odd pure spinors to the metric on the supergravity moduli space of internal metric and B-field fluctuations. We derive the N=1 vacuum conditions from this N=2 effective action, as well as from its N=1 truncation. We prove a direct correspondence between these conditions and an integrated version of the pure spinor equations characterizing the N=1 backgrounds at the ten dimensional level.Comment: 54 pages. v2, v3: minor change

    Type II compactifications on manifolds with SU(2) x SU(2) structure

    Full text link
    We study compactifications of type II theories on SU(2) x SU(2) structure manifolds to six, five and four spacetime dimensions. We use the framework of generalized geometry to describe the NS-NS sector of such compactifications and derive the structure of their moduli spaces. We show that in contrast to SU(3) x SU(3) structure compactifications, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we formulate type II compactifications on SU(2) x SU(2) structures in the context of exceptional generalized geometry which makes the U-duality group manifest and naturally incorporates the scalar degrees of freedom arising in the Ramond-Ramond sector. Via this formalism we derive the structure of the moduli spaces as it is expected from N=4 supergravity.Comment: 69 pages, v2 published versio

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    Hypermoduli Stabilization, Flux Attractors, and Generating Functions

    Get PDF
    We study stabilization of hypermoduli with emphasis on the effects of generalized fluxes. We find a class of no-scale vacua described by ISD conditions even in the presence of geometric flux. The associated flux attractor equations can be integrated by a generating function with the property that the hypermoduli are determined by a simple extremization principle. We work out several orbifold examples where all vector moduli and many hypermoduli are stabilized, with VEVs given explicitly in terms of fluxes.Comment: 45 pages, no figures; Version submitted to JHE

    M-theory on eight-manifolds revisited: N=1 supersymmetry and generalized Spin(7) structures

    Full text link
    The requirement of N=1{\cal N}=1 supersymmetry for M-theory backgrounds of the form of a warped product M×wX{\cal M}\times_{w}X, where XX is an eight-manifold and M{\cal M} is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ\xi on XX. ξ\xi lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y:=X×S1Y:=X\times S^1, where S1S^1 is a circle of constant radius, implying the reduction of the structure group of YY to Spin(7)Spin(7). In general, however, there is no reduction of the structure group of XX itself. This situation can be described in the language of generalized Spin(7)Spin(7) structures, defined in terms of certain spinors of Spin(TYTY)Spin(TY\oplus T^*Y). We express the condition for N=1{\cal N}=1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in XX in terms of a `preferred' Spin(7)Spin(7) structure, we show that the requirement of N=1{\cal N}=1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27\bf{27} of Spin(7)Spin(7), in terms of the warp factor and a one-form LL on XX (not necessarily nowhere-vanishing) constructed as a ξ\xi bilinear; in addition, LL is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7)Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7)Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7)Spin(7) holonomy.Comment: 24 pages. V2: introduction slightly extended, typos corrected in the text, references added. V3: the role of Spin(7) clarified, erroneous statements thereof corrected. New material on generalized Spin(7) structures in nine dimensions. To appear in JHE

    On moduli and effective theory of N=1 warped flux compactifications

    Full text link
    The moduli space of N=1 type II warped compactions to flat space with generic internal fluxes is studied. Using the underlying integrable generalized complex structure that characterizes these vacua, the different deformations are classified by H-twisted generalized cohomologies and identified with chiral and linear multiplets of the effective four-dimensional theory. The Kaehler potential for chiral fields corresponding to classically flat moduli is discussed. As an application of the general results, type IIB warped Calabi-Yau compactifications and other SU(3)-structure subcases are considered in more detail.Comment: 54 pages; v3: comments and references added, version published in JHE

    Supersymmetric sources, integrability and generalized-structure compactifications

    Full text link
    In the context of supersymmetric compactifications of type II supergravity to four dimensions, we show that orientifold sources can be compatible with a generalized SU(3) x SU(3)-structure that is neither strictly SU(3) nor static SU(2). We illustrate this with explicit examples, obtained by suitably T-dualizing known solutions on the six-torus. In addition we prove the following integrability statements, valid under certain mild assumptions: (a) for general type II supergravity backgrounds with orientifold and/or D-brane generalized-calibrated sources, the source-corrected Einstein and dilaton equations of motion follow automatically from the supersymmetry equations once the likewise source-corrected form equations of motion and Bianchi identities are imposed; (b) in the special case of supersymmetric compactifications to four-dimensional Minkowski space, the equations of motion of all fields, including the NSNS three-form, follow automatically once the supersymmetry and the Bianchi identities of the forms are imposed. Both (a) and (b) are equally valid whether the sources are smeared or localized. As a byproduct we obtain the calibration form for a space-filling NS5-brane.Comment: 32 pages, 1 table, v2: added references, v3: corrected mistake in (4.1) leading to factor 2 mistake in (B.6), corrected (B.5), smaller typo
    corecore