18 research outputs found

    Drug delivery across length scales

    Get PDF
    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future

    Therapy Insight: Parenteral Estrogen treatment for Prostate Cancer—a new dawn for an old therapy

    Get PDF
    Oral estrogens were the treatment of choice for carcinoma of the prostate for over four decades, but were abandoned because of an excess of cardiovascular and thromboembolic toxicity. It is now recognized that most of this toxicity is related to the first pass portal circulation, which upregulates the hepatic metabolism of hormones, lipids and coagulation proteins. Most of this toxicity can be avoided by parenteral (intramuscular or transdermal) estrogen administration, which avoids hepatic enzyme induction. It also seems that a short-term but modest increase in cardiovascular morbidity (but not mortality) is compensated for by a long-term cardioprotective benefit, which accrues progressively as vascular remodeling develops over time. Parenteral estrogen therapy has the advantage of giving protection against the effects of andropause (similar to the female menopause), which are induced by conventional androgen suppression and include osteoporotic fracture, hot flashes, asthenia and cognitive dysfunction. In addition, parenteral estrogen therapy is significantly cheaper than contemporary endocrine therapy, with substantive economic implications for health providers

    Cancer Treatment and Bone Health

    Get PDF
    Considerable advances in oncology over recent decades have led to improved survival, while raising concerns about long-term consequences of anticancer treatments. In patients with breast or prostate malignancies, bone health is a major issue due to the high risk of bone metastases and the frequent prolonged use of hormone therapies that alter physiological bone turnover, leading to increased fracture risk. Thus, the onset of cancer treatment-induced bone loss (CTIBL) should be considered by clinicians and recent guidelines should be routinely applied to these patients. In particular, baseline and periodic follow-up evaluations of bone health parameters enable the identification of patients at high risk of osteoporosis and fractures, which can be prevented by the use of bone-targeting agents (BTAs), calcium and vitamin D supplementation and modifications of lifestyle. This review will focus upon the pathophysiology of breast and prostate cancer treatment-induced bone loss and the most recent evidence about effective preventive and therapeutic strategies
    corecore