1,238 research outputs found
Spacetime Slices and Surfaces of Revolution
Under certain conditions, a -dimensional slice of a
spherically symmetric black hole spacetime can be equivariantly embedded in
-dimensional Minkowski space. The embedding depends on a real parameter
that corresponds physically to the surface gravity of the black hole
horizon.
Under conditions that turn out to be closely related, a real surface that
possesses rotational symmetry can be equivariantly embedded in 3-dimensional
Euclidean space. The embedding does not obviously depend on a parameter.
However, the Gaussian curvature is given by a simple formula: If the metric is
written , then
\K_g=-{1/2}\phi''(r).
This note shows that metrics and occur in dual pairs, and that
the embeddings described above are orthogonal facets of a single phenomenon. In
particular, the metrics and their respective embeddings differ by a Wick
rotation that preserves the ambient symmetry.
Consequently, the embedding of depends on a real parameter. The ambient
space is not smooth, and is inversely proportional to the cone angle
at the axis of rotation. Further, the Gaussian curvature of is given
by a simple formula that seems not to be widely known.Comment: 15 pages, added reference
GRB Spectral Hardness and Afterglow Properties
A possible relationship between the presence of a radio afterglow and
gamma-ray burst spectral hardness is discussed. The correlation is marginally
significant; the spectral hardness of the bursts with radio afterglows
apparently results from a combination of the break energy Ebreak and the
high-energy spectral index beta. If valid, this relationship would indicate
that the afterglow does carry information pertaining to the GRB central engine.Comment: 5 pages, 3 figures, presented at the 5th Huntsville Gamma-Ray Burst
Symposiu
Physical literacy: Importance, assessment and future directions
Physical literacy (PL) has become a major focus of physical education, physical activity and sports promotion worldwide. PL is a multifaceted conceptualisation of the skills required to fully realise potentials through embodied experience. Substantial financial investments in PL education by governments are underpinned by a wide range of anticipated benefits, including expectations of significant future savings to healthcare, improved physical and psychological well-being of the population, increased work-force productivity and raised levels of expertise in sport and exercise participation. However, disappointingly, scientific evidence showing the efficacy of PL interventions to successfully meet such high expectation is limited. We suggest that contradictions in research findings are due largely to limitations in movement assessment batteries and consequent discrepancies between measurements used to assess the immediate outcomes of PL programmes. Notably, there is no robust empirical tool for evidencing skill learning in the physical movement component of PL, education and this presents a serious limitation to the design of, and claims that can be made for, such interventions. Considering the parameters of proficient PL skills and the limitations of current evaluation instruments, possible future directions for developing empirical measures of PL movement skills are presented
Mental skills training in sprinting
The Science of Sport: Sprinting examines the scientific principles that underpin the preparation and performance of athletics at all levels, from grassroots to Olympic competition. Drawing on the expertise of some of the world's leading coaches and sport science professionals, the book presents a detailed analysis of the latest evidence and explores the ways in which science has influenced, and subsequently improved, the sport of sprinting.
By providing an overview of the principles of sport science and how these are applied in practice, the book is essential reading for students and academics, coaches and performers, physiotherapists, club doctors and professional support staff
Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order
The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4)
x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the
magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to
match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive
asymmetry in the magnetic excitations above 40 meV was observed for both doping
levels, but an additional ferromagnetic mode was observed in x = 0.45 and not
in the x = 0.4. We discuss the origin of crossover in the excitation spectrum
between x = 0.45 and x = 0.4 with respect to discommensurations in the charge
stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings
paper from the ICM 2012 conferenc
- …
