1,271 research outputs found

    Concurrency Lock Issues in Relational Cloud Computing

    Get PDF
    The widespread popularity of Cloud computing as a preferred platform for the deployment of web applications has resulted in an enormous number of applications moving to the cloud, and the huge success of cloud service providers. Due to the increasing number of web applications being hosted in the cloud, and the growing scale of data which these applications store, process, and serve – scalable data management systems form a critical part of cloud infrastructures. There are issues related to the database security while database is on cloud. The major challenging issues are multi-tenancy, scalability and the privacy. This paper focuses on the problems faced in the data security of Relational Cloud. The problems faced by various types of tenants and the type of access into the database makes a rework on the security of data, by analyzing proper locking strategies on the records accessed from the database. Data security in cloud computing addresses the type of access mode by the users (for analytical or transaction purpose) and the frequency of data access from the physical location (in shared or no-shared disk mode). Accordingly, the various data locking strategies are studied and appropriate locking mechanism will be implemented for real-time applications as in e-commerce. Keywords: Relational Cloud, Multi-tenant, two-phase locking, concurrency control, data management

    Extended surfaces modulate and can catalyze hydrophobic effects

    Full text link
    Interfaces are a most common motif in complex systems. To understand how the presence of interfaces affect hydrophobic phenomena, we use molecular simulations and theory to study hydration of solutes at interfaces. The solutes range in size from sub-nanometer to a few nanometers. The interfaces are self-assembled monolayers with a range of chemistries, from hydrophilic to hydrophobic. We show that the driving force for assembly in the vicinity of a hydrophobic surface is weaker than that in bulk water, and decreases with increasing temperature, in contrast to that in the bulk. We explain these distinct features in terms of an interplay between interfacial fluctuations and excluded volume effects---the physics encoded in Lum-Chandler-Weeks theory [J. Phys. Chem. B 103, 4570--4577 (1999)]. Our results suggest a catalytic role for hydrophobic interfaces in the unfolding of proteins, for example, in the interior of chaperonins and in amyloid formation.Comment: 22 pages, 5 figure

    Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    Full text link
    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface-water attractions, is akin to density fluctuations at the water-vapor interface. Specifically, the probability of density depletion near the surface is significantly larger than that in bulk. In contrast, we find that the statistics of water density fluctuations near a model hydrophilic surface are similar to that in the bulk

    Modeling healthcare authorization and claim submissions using the openEHR dual-model approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture.</p> <p>Methods</p> <p>Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms.</p> <p>Results</p> <p>The archetypes based on the openEHR RM (Reference Model) can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it.</p> <p>Conclusions</p> <p>Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing processes. A complete communication architecture to simulate the exchange of TISS data between systems according to the openEHR approach still needs to be designed and implemented.</p

    Towards the interoperability of computerised guidelines and electronic health records: an experiment with openEHR archetypes and a chronic heart failure guideline

    Get PDF
    Clinical guidelines contain recommendations based on the best empirical evidence available at the moment. There is a wide consensus about the benefits of guidelines and about the fact that they should be deployed through clinical information systems, making them available during clinical consultations. However, one of the main obstacles to this integration is the interaction with the electronic healthrecord system. With the aim of solving the interoperability problems of guideline systems, we have investigated the utilisation of the openEHR standardisation proposal in the context of one of the existing guideline representation languages. Concretely, we have designed a collection of archetypes to be used within a chronic heart failure guideline. The main contribution of our work is the utilisation of openEHR archetypes in the framework of guideline representation languages. Other contributions include both the concrete set of archetypes that we have selected and the methodological approach that we have followed to obtain itThis work has been supported by FundaciÂŽo Caixa CastellÂŽo-Bancaixa, through the research project P11B2009-3

    Magnetic anisotropy, first-order-like metamagnetic transitions and large negative magnetoresistance in the single crystal of Gd2_{2}PdSi3_3

    Get PDF
    Electrical resistivity (ρ\rho), magnetoresistance (MR), magnetization, thermopower and Hall effect measurements on the single crystal Gd2_{2}PdSi3_3, crystallizing in an AlB2_2-derived hexagonal structure are reported. The well-defined minimum in ρ\rho at a temperature above N\'eel temperature (TN_N= 21 K) and large negative MR below ∌\sim 3TN_N, reported earlier for the polycrystals, are reproducible even in single crystals. Such features are generally uncharacteristic of Gd alloys. In addition, we also found interesting features in other data, e.g., two-step first-order-like metamagnetic transitions for the magnetic field along [0001] direction. The alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.Comment: RevTeX, 5 pages, 6 encapsulated postscript figures; scheduled to be published in Phy. Rev. B (01 November 1999, B1
    • 

    corecore