25,609 research outputs found

    New perspectives on research

    Full text link
    The Graduate Research Session at the conference will be held on Thursday March 1st from 4-5pm. At this session, graduate students from institutions from across the state will present a series of lightning talks where each presenter will briefly share the purpose and findings of their research study, and share a few implications for music education practice. The graduate student panel will be seated in a circle in order to facilitate sharing. Non-presenting attendees will be seated in an outer circle which will then be integrated with the presenters during the Q&A portion of the session, in order promote the free-sharing of ideas between all in ttendance. In order to highlight a few examples of the exciting projects being presented, Yank’l Garcia and Nicholas Quigley, master’s students at Boston University, briefly introduce their research projects below. Please join us to learn about the fresh and exciting topics that graduate student researchers are focusing upon within the field of music education.First author draf

    The Probability Distribution Function of Column Density in Molecular Clouds

    Get PDF
    (Abridged) We discuss the probability distribution function (PDF) of column density resulting from density fields with lognormal PDFs, applicable to isothermal gas (e.g., probably molecular clouds). We suggest that a ``decorrelation length'' can be defined as the distance over which the density auto-correlation function has decayed to, for example, 10% of its zero-lag value, so that the density ``events'' along a line of sight can be assumed to be independent over distances larger than this, and the Central Limit Theorem should be applicable. However, using random realizations of lognormal fields, we show that the convergence to a Gaussian is extremely slow in the high- density tail. Thus, the column density PDF is not expected to exhibit a unique functional shape, but to transit instead from a lognormal to a Gaussian form as the ratio η\eta of the column length to the decorrelation length increases. Simultaneously, the PDF's variance decreases. For intermediate values of η\eta, the column density PDF assumes a nearly exponential decay. We then discuss the density power spectrum and the expected value of η\eta in actual molecular clouds. Observationally, our results suggest that η\eta may be inferred from the shape and width of the column density PDF in optically-thin-line or extinction studies. Our results should also hold for gas with finite-extent power-law underlying density PDFs, which should be characteristic of the diffuse, non-isothermal neutral medium (temperatures ranging from a few hundred to a few thousand degrees). Finally, we note that for η≳100\eta \gtrsim 100, the dynamic range in column density is small (â‰Č\lesssim a factor of 10), but this is only an averaging effect, with no implication on the dynamic range of the underlying density distribution.Comment: 13 pages, 7 figures (10 postscript files). Accepted in ApJ. Eliminated implication that ratio of column length to correlation length necessarily increases with resolution, and thus that 3D simulations are unresolved. Added discussion of dependence of autocorrelation function with parameters of the turbulenc

    A Single Tri-Epitopic Antibody Virtually Recapitulates the Potency of a Combination of Three Monoclonal Antibodies in Neutralization of Botulinum Neurotoxin Serotype A.

    Get PDF
    The standard of treatment for botulism, equine antitoxin, is a foreign protein with associated safety issues and a short serum half-life which excludes its use as a prophylactic antitoxin and makes it a less-than-optimal therapeutic. Due to these limitations, a recombinant monoclonal antibody (mAb) product is preferable. It has been shown that combining three mAbs that bind non-overlapping epitopes leads to highly potent botulinum neurotoxin (BoNT) neutralization. Recently, a triple human antibody combination for BoNT/A has demonstrated potent toxin neutralization in mouse models with no serious adverse events when tested in a Phase I clinical trial. However, a triple antibody therapeutic poses unique development and manufacturing challenges. Thus, potentially to streamline development of BoNT antitoxins, we sought to achieve the potency of multiple mAb combinations in a single IgG-based molecule that has a long serum half-life. The design, production, and testing of a single tri-epitopic IgG1-based mAb (TeAb) containing the binding sites of each of the three parental BoNT/A mAbs yielded an antibody of nearly equal potency to the combination. The approach taken here could be applied to the design and creation of other multivalent antibodies that could be used for a variety of applications, including toxin elimination

    A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes.

    Get PDF
    Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (KD). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had KD values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018

    An Interstellar Conduction Front Within a Wolf-Rayet Ring Nebula Observed with the GHRS

    Full text link
    With the High Resolution Spectrograph aboard the Hubble Space Telescope we obtained high signal-to-noise (S/N > 200 - 600 per 17 km/s resolution element) spectra of narrow absorption lines toward the Wolf-Rayet star HD 50896. The ring nebula S308 that surrounds this star is thought to be caused by a pressure-driven bubble bounded by circumstellar gas (most likely from a red supergiant or luminous blue variable progenitor) pushed aside by a strong stellar wind. Our observation has shown for the first time that blueshifted (approximately 70 km/s relative to the star) absorption components of C IV and N V arise in a conduction front between the hot interior of the bubble and the cold shell of swept-up material. These lines set limits on models of the conduction front. Nitrogen in the shell appears to be overabundant by a factor ~10. The P Cygni profiles of N V and C IV are variable, possibly due to a suspected binary companion to HD 50896.Comment: 32 pages, Latex, to appear in the Astrophysical Journal, April, 199

    Physical Structure of Small Wolf-Rayet Ring Nebulae

    Get PDF
    We have selected the seven most well-defined WR ring nebulae in the LMC (Br 2, Br 10, Br 13, Br 40a, Br 48, Br 52, and Br 100) to study their physical nature and evolutionary stages. New CCD imaging and echelle observations have been obtained for five of these nebulae; previous photographic imaging and echelle observations are available for the remaining two nebulae. Using the nebular dynamics and abundances, we find that the Br 13 nebula is a circumstellar bubble, and that the Br 2 nebula may represent a circumstellar bubble merging with a fossil main-sequence interstellar bubble. The nebulae around Br 10, Br 52, and Br 100 all show influence of the ambient interstellar medium. Their regular expansion patterns suggest that they still contain significant amounts of circumstellar material. Their nebular abundances would be extremely interesting, as their central stars are WC5 and WN3-4 stars whose nebular abundances have not been derived previously. Intriguing and tantalizing implications are obtained from comparisons of the LMC WR ring nebulae with ring nebulae around Galactic WR stars, Galactic LBVs, LMC LBVs, and LMC BSGs; however, these implications may be limited by small-number statistics. A SNR candidate close to Br 2 is diagnosed by its large expansion velocity and nonthermal radio emission. There is no indication that Br 2's ring nebula interacts dynamically with this SNR candidate.Comment: 20 pages, Latex (aaspp4.sty), 2 figures, accepted by the Astronomical Journal (March 99 issue

    Chemical Abundances in Field Red Giants from High-Resolution H-Band Spectra using the APOGEE Spectral Linelist

    Full text link
    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory (KPNO) Fourier Transform Spectrometer (FTS), are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the SDSS III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. Measured chemical abundances include the cosmochemically important isotopes 12C, 13C, 14N, and 16O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. A comparison of the abundances derived here with published values for these stars reveals consistent results to ~0.1 dex. The APOGEE spectral region and linelist is, thus, well-suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants using high-resolution spectroscopy.Comment: Accepted for publication in The Astrophysical Journal. 42 pages, 12 figure
    • 

    corecore