44 research outputs found

    Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model

    Get PDF
    The use of fluorescent proteins to label tumors is revolutionizing cancer research, enabling imaging of both primary and metastatic lesions, which is important for diagnosis, staging, and therapy. This report describes the use of fluorescence laparoscopy to image green fluorescent protein (GFP)-expressing tumors in an orthotopic mouse model of human pancreatic cancer. The orthotopic mouse model of human pancreatic cancer was established by injecting GFP-expressing MiaPaCa-2 human pancreatic cancer cells into the pancreas of 6-week-old female athymic mice. On postoperative day 14, diagnostic laparoscopy using both white and fluorescent light was performed. A standard laparoscopic system was modified by placing a 480-nm short-pass excitation filter between the light cable and the laparoscope in addition to using a 2-mm-thick emission filter. A camera was used that allowed variable exposure time and gain setting. For mouse laparoscopy, a 3-mm 0° laparoscope was used. The mouse’s abdomen was gently insufflated to 2 mm Hg via a 22-gauge angiocatheter. After laparoscopy, the animals were sacrificed, and the tumors were collected and processed for histologic review. The experiments were performed in triplicate. Fluorescence laparoscopy enabled rapid imaging of the brightly fluorescent tumor in the pancreatic body. Use of the proper filters enabled simultaneous visualization of the tumor and the surrounding structures with minimal autofluorescence. Fluorescence laparoscopy thus allowed exact localization of the tumor, eliminating the need to switch back and forth between white and fluorescence lighting, under which the background usually is so darkened that it is difficult to maintain spatial orientation. The use of fluorescence laparoscopy permits the facile, real-time imaging and localization of tumors labeled with fluorescent proteins. The results described in this report should have important clinical potential

    Interleukin-6 receptor blockade in treatment-refractory MOG-IgG-associated disease and neuromyelitis optica spectrum disorders

    Get PDF
    BACKGROUND AND OBJECTIVES: To evaluate the long-term safety and efficacy of tocilizumab (TCZ), a humanized anti-interleukin-6 receptor antibody in myelin oligodendrocyte glycoprotein-IgG-associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD). METHODS: Annualized relapse rate (ARR), Expanded Disability Status Scale score, MRI, autoantibody titers, pain, and adverse events were retrospectively evaluated in 57 patients with MOGAD (n = 14), aquaporin-4 (AQP4)-IgG seropositive (n = 36), and seronegative NMOSD (n = 7; 12%), switched to TCZ from previous immunotherapies, particularly rituximab. RESULTS: Patients received TCZ for 23.8 months (median; interquartile range 13.0-51.1 months), with an IV dose of 8.0 mg/kg (median; range 6-12 mg/kg) every 31.6 days (mean; range 26-44 days). For MOGAD, the median ARR decreased from 1.75 (range 0.5-5) to 0 (range 0-0.9; p = 0.0011) under TCZ. A similar effect was seen for AQP4-IgG+ (ARR reduction from 1.5 [range 0-5] to 0 [range 0-4.2]; p < 0.001) and for seronegative NMOSD (from 3.0 [range 1.0-3.0] to 0.2 [range 0-2.0]; p = 0.031). During TCZ, 60% of all patients were relapse free (79% for MOGAD, 56% for AQP4-IgG+, and 43% for seronegative NMOSD). Disability follow-up indicated stabilization. MRI inflammatory activity decreased in MOGAD (p = 0.04; for the brain) and in AQP4-IgG+ NMOSD (p < 0.001; for the spinal cord). Chronic pain was unchanged. Regarding only patients treated with TCZ for at least 12 months (n = 44), ARR reductions were confirmed, including the subgroups of MOGAD (n = 11) and AQP4-IgG+ patients (n = 28). Similarly, in the group of patients treated with TCZ for at least 12 months, 59% of them were relapse free, with 73% for MOGAD, 57% for AQP4-IgG+, and 40% for patients with seronegative NMOSD. No severe or unexpected safety signals were observed. Add-on therapy showed no advantage compared with TCZ monotherapy. DISCUSSION: This study provides Class III evidence that long-term TCZ therapy is safe and reduces relapse probability in MOGAD and AQP4-IgG+ NMOSD

    Experimental multi-scale approach to determine the local mechanical properties of foam base material in polyisocyanurate metal panels

    Get PDF
    Polyisocyanurate (PIR) foams were examined regarding their local chemical composition using ATR-IR spectroscopy. As a special parameter the PIR: Amide III intensity ratio is to be mentioned, which represents the quantity of the formed PIR groups. Based on the local PIR: Amide III intensity ratio, the mechanical properties (Young's modulus) of the foam base material were analyzed at defined positions by AFM and Nanoindentation. It turned out that the AFM method is only suitable for qualitative analysis, because the values differ strongly from macroscopic measurements. For the measurements using nanoindentation, a new embedding method was developed, which achieves significantly more realistic and reproducible results compared to the embedding method used in the literature and shows a very good agreement with the macroscopic values. In general, it has been shown that a higher PIR: Amide III intensity ratio tends to lead to a higher Young's modulus. Nevertheless, there are other, currently unknown characteristic values which also influence the Young's modulus
    corecore