7,636 research outputs found
Incommensurate phonon anomaly and the nature of charge density waves in cuprates
While charge density wave (CDW) instabilities are ubiquitous to
superconducting cuprates, the different ordering wavevectors in various cuprate
families have hampered a unified description of the CDW formation mechanism.
Here we investigate the temperature dependence of the low energy phonons in the
canonical CDW ordered cuprate LaBaCuO. We discover
that the phonon softening wavevector associated with CDW correlations becomes
temperature dependent in the high-temperature precursor phase and changes from
a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering
transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature
behavior shows that "214"-type cuprates can host CDW correlations at a similar
wavevector to previously reported CDW correlations in non-"214"-type cuprates
such as YBaCuO. This indicates that cuprate CDWs may
arise from the same underlying instability despite their apparently different
low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of
supplementary materia
Optimal model parameters for multi-objective large-eddy simulations
A methodology is proposed for the assessment of error dynamics in large-eddy simulations. It is demonstrated that the optimization of model parameters with respect to one flow property can be obtained at the expense of the accuracy with which other flow properties are predicted. Therefore, an approach is introduced which allows to assess the total errors based on various flow properties simultaneously. We show that parameter settings exist, for which all monitored errors are "near optimal," and refer to such regions as "multi-objective optimal parameter regions." We focus on multi-objective errors that are obtained from weighted spectra, emphasizing both large- as well small-scale errors. These multi-objective optimal parameter regions depend strongly on the simulation Reynolds number and the resolution. At too coarse resolutions, no multi-objective optimal regions might exist as not all error-components might simultaneously be sufficiently small. The identification of multi-objective optimal parameter regions can be adopted to effectively compare different subgrid models. A comparison between large-eddy simulations using the Lilly-Smagorinsky model, the dynamic Smagorinsky model and a new Re-consistent eddy-viscosity model is made, which illustrates this. Based on the new methodology for error assessment the latter model is found to be the most accurate and robust among the selected subgrid models, in combination with the finite volume discretization used in the present study
Phase I-II Trial of Foscarnet for Prevention of Cytomegalovirus Infection in Autologous and Allogeneic Marrow Transplant Recipients
The safety and efficacy of foscarnet for prevention of cytomegalovirus (CMV) infection was evaluated in 19 CMV-seropositive bone marrow transplant (BMT) recipients. All patients received intermittent intravenous (iv) foscarnet: 40 mg/kg every 8 h from 7 days before to day 30 after BMT, then 60 mg/kg once a day until day 75. The main toxicity was transient renal dysfunction, with a >50 µmol/L increase in serum creatinine above baseline in 5 of the 7 autograft recipients and in 6 of the 12 allograft recipients. Only 4 allograft recipients developed CMV infection during foscarnet prophylaxis, and no patient showed evidenceofCMV disease. Because 3 allograft recipients receiving concomitant iv amphotericin B showed rapid impairment of renal function, foscarnet prophylaxis should not be given to allograft recipients requiring amphotericin B; otherwise, foscarnet prophylaxis at this dose appears safe after BM
Properties of HxTaS2
The preparation of Hx TaS2 (0 \u3c x \u3c 0.87) is described. The compounds are only marginally stable at room temperature, slowly evolving H2S and H2 (and possibly Hp in air). Magnetic susceptibility data show that a low temperature transformation in 2H ... TaS2 (at so•K) is suppressed with the addition of hydrogen, and· at the same time the superconducting transition temperature T c rises from 0.8 to ~4.2•K at x = 0.11. Heat capacity measurements near this concentration show the superconductivity to be a bulk effect. Finally, by correlation of this data with susceptibility and T c measurements in other intercalation compounds, we suggest that the rise of T c (at low electron transfer) is due to suppression of the low temperature transformation and not due to an excitonic mechanism of superconductivity
Fragility and hysteretic creep in frictional granular jamming
The granular jamming transition is experimentally investigated in a
two-dimensional system of frictional, bi-dispersed disks subject to
quasi-static, uniaxial compression at zero granular temperature. Currently
accepted results show the jamming transition occurs at a critical packing
fraction . In contrast, we observe the first compression cycle exhibits
{\it fragility} - metastable configuration with simultaneous jammed and
un-jammed clusters - over a small interval in packing fraction (). The fragile state separates the two conditions that define
with an exponential rise in pressure starting at and an exponential
fall in disk displacements ending at . The results are explained
through a percolation mechanism of stressed contacts where cluster growth
exhibits strong spatial correlation with disk displacements. Measurements with
several disk materials of varying elastic moduli and friction coefficients
, show friction directly controls the start of the fragile state, but
indirectly controls the exponential slope. Additionally, we experimentally
confirm recent predictions relating the dependence of on . Under
repetitive loading (compression), the system exhibits hysteresis in pressure,
and the onset increases slowly with repetition number. This friction
induced hysteretic creep is interpreted as the granular pack's evolution from a
metastable to an eventual structurally stable configuration. It is shown to
depend upon the quasi-static step size which provides the only
perturbative mechanism in the experimental protocol, and the friction
coefficient which acts to stabilize the pack.Comment: 12 pages, 10 figure
Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser
Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented
Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper
Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship
Doping Dependence of Collective Spin and Orbital Excitations in Spin 1 Quantum Antiferromagnet LaSrNiO Observed by X-rays
We report the first empirical demonstration that resonant inelastic x-ray
scattering (RIXS) is sensitive to \emph{collective} magnetic excitations in
systems by probing the Ni -edge of LaSrNiO (). The magnetic excitation peak is asymmetric, indicating the
presence of single and multi spin-flip excitations. As the hole doping level is
increased, the zone boundary magnon energy is suppressed at a much larger rate
than that in hole doped cuprates. Based on the analysis of the orbital and
charge excitations observed by RIXS, we argue that this difference is related
to the orbital character of the doped holes in these two families. This work
establishes RIXS as a probe of fundamental magnetic interactions in nickelates
opening the way towards studies of heterostructures and ultra-fast pump-probe
experiments.Comment: 8 pages, 4 figures, see ancillary files for the supplemental materia
- …