1,596 research outputs found
Nonequilibrium perturbation theory for complex scalar fields
Real-time perturbation theory is formulated for complex scalar fields away
from thermal equilibrium in such a way that dissipative effects arising from
the absorptive parts of loop diagrams are approximately resummed into the
unperturbed propagators. Low order calculations of physical quantities then
involve quasiparticle occupation numbers which evolve with the changing state
of the field system, in contrast to standard perturbation theory, where these
occupation numbers are frozen at their initial values. The evolution equation
of the occupation numbers can be cast approximately in the form of a Boltzmann
equation. Particular attention is given to the effects of a non-zero chemical
potential, and it is found that the thermal masses and decay widths of
quasiparticle modes are different for particles and antiparticles.Comment: 15 pages using RevTeX; 2 figures in 1 Postscript file; Submitted to
Phys. Rev.
Perturbative nonequilibrium dynamics of phase transitions in an expanding universe
A complete set of Feynman rules is derived, which permits a perturbative
description of the nonequilibrium dynamics of a symmetry-breaking phase
transition in theory in an expanding universe. In contrast to a
naive expansion in powers of the coupling constant, this approximation scheme
provides for (a) a description of the nonequilibrium state in terms of its own
finite-width quasiparticle excitations, thus correctly incorporating
dissipative effects in low-order calculations, and (b) the emergence from a
symmetric initial state of a final state exhibiting the properties of
spontaneous symmetry breaking, while maintaining the constraint . Earlier work on dissipative perturbation theory and spontaneous symmetry
breaking in Minkowski spacetime is reviewed. The central problem addressed is
the construction of a perturbative approximation scheme which treats the
initial symmetric state in terms of the field , while the state that
emerges at later times is treated in terms of a field , linearly related
to . The connection between early and late times involves an infinite
sequence of composite propagators. Explicit one-loop calculations are given of
the gap equations that determine quasiparticle masses and of the equation of
motion for and the renormalization of these equations is
described. The perturbation series needed to describe the symmetric and
broken-symmetry states are not equivalent, and this leads to ambiguities
intrinsic to any perturbative approach. These ambiguities are discussed in
detail and a systematic procedure for matching the two approximations is
described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review
Numerical investigation of friction in inflaton equations of motion
The equation of motion for the expectation value of a scalar quantum field
does not have the local form that is commonly assumed in studies of
inflationary cosmology. We have recently argued that the true, temporally
non-local equation of motion does not possess a time-derivative expansion and
that the conversion of inflaton energy into particles is not, in principle,
described by the friction term estimated from linear response theory. Here, we
use numerical methods to investigate whether this obstacle to deriving a local
equation of motion is purely formal, or of some quantitative importance. Using
a simple scalar-field model, we find that, although the non-equilibrium
evolution can exhibit significant damping, this damping is not well described
by the local equation of motion obtained from linear response theory. It is
possible that linear response theory does not apply to the situation we study
only because thermalization turns out to be slow, but we argue that that the
large discrepancies we observe indicate a failure of the local approximation at
a more fundamental level.Comment: 13 pages, 7 figure
Dissipation in equations of motion of scalar fields
The methods of non-equilibrium quantum field theory are used to investigate
the possibility of representing dissipation in the equation of motion for the
expectation value of a scalar field by a friction term, such as is commonly
included in phenomenological inflaton equations of motion. A sequence of
approximations is exhibited which reduces the non-equilibrium theory to a set
of local evolution equations. However, the adiabatic solution to these
evolution equations which is needed to obtain a local equation of motion for
the expectation value is not well defined; nor, therefore, is the friction
coefficient. Thus, a non-equilibrium treatment is essential, even for a system
that remains close to thermal equilibrium, and the formalism developed here
provides one means of achieving this numerically.Comment: 17 pages, 5 figure
Nonequilibrium perturbation theory for spin-1/2 fields
A partial resummation of perturbation theory is described for field theories
containing spin-1/2 particles in states that may be far from thermal
equilibrium. This allows the nonequilibrium state to be characterized in terms
of quasiparticles that approximate its true elementary excitations. In
particular, the quasiparticles have dispersion relations that differ from those
of free particles, finite thermal widths and occupation numbers which, in
contrast to those of standard perturbation theory evolve with the changing
nonequilibrium environment. A description of this kind is essential for
estimating the evolution of the system over extended periods of time. In
contrast to the corresponding description of scalar particles, the structure of
nonequilibrium fermion propagators exhibits features which have no counterpart
in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.
Binary Reactive Adsorbate on a Random Catalytic Substrate
We study the equilibrium properties of a model for a binary mixture of
catalytically-reactive monomers adsorbed on a two-dimensional substrate
decorated by randomly placed catalytic bonds. The interacting and
monomer species undergo continuous exchanges with particle reservoirs and react
() as soon as a pair of unlike particles appears on sites
connected by a catalytic bond.
For the case of annealed disorder in the placement of the catalytic bonds
this model can be mapped onto a classical spin model with spin values , with effective couplings dependent on the temperature and on the mean
density of catalytic bonds. This allows us to exploit the mean-field theory
developed for the latter to determine the phase diagram as a function of in
the (symmetric) case in which the chemical potentials of the particle
reservoirs, as well as the and interactions are equal.Comment: 12 pages, 4 figure
Friction in inflaton equations of motion
The possibility of a friction term in the equation of motion for a scalar
field is investigated in non-equilibrium field theory. The results obtained
differ greatly from existing estimates based on linear response theory, and
suggest that dissipation is not well represented by a term of the form
.Comment: 4 pages, 2 figures, RevTex4. An obscurity in the original version has
been clarifie
Grand canonical and canonical solution of self-avoiding walks with up to three monomers per site on the Bethe lattice
We solve a model of polymers represented by self-avoiding walks on a lattice
which may visit the same site up to three times in the grand-canonical
formalism on the Bethe lattice. This may be a model for the collapse transition
of polymers where only interactions between monomers at the same site are
considered. The phase diagram of the model is very rich, displaying coexistence
and critical surfaces, critical, critical endpoint and tricritical lines, as
well as a multicritical point. From the grand-canonical results, we present an
argument to obtain the properties of the model in the canonical ensemble, and
compare our results with simulations in the literature. We do actually find
extended and collapsed phases, but the transition between them, composed by a
line of critical endpoints and a line of tricritical points, separated by the
multicritical point, is always continuous. This result is at variance with the
simulations for the model, which suggest that part of the line should be a
discontinuous transition. Finally, we discuss the connection of the present
model with the standard model for the collapse of polymers (self-avoiding
self-attracting walks), where the transition between the extended and collapsed
phases is a tricritical point.Comment: 34 pages, including 10 figure
WD0837+185:the formation and evolution of an extreme mass ratio white dwarf-brown dwarf binary in Praesepe
There is a striking and unexplained dearth of brown dwarf companions in close
orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the
frequency of stellar and planetary companions. Although rare and relatively
short-lived, these systems leave detectable evolutionary end points in the form
of white dwarf - brown dwarf binaries and these remnants can offer unique
insights into the births and deaths of their parent systems. We present the
discovery of a close (orbital separation ~ 0.006 AU) substellar companion to a
massive white dwarf member of the Praesepe star cluster. Using the cluster age
and the mass of the white dwarf we constrain the mass of the white dwarf
progenitor star to lie in the range 3.5 - 3.7 Msun (B9). The high mass of the
white dwarf means the substellar companion must have been engulfed by the B
star's envelope while it was on the late asymptotic giant branch (AGB). Hence,
the initial separation of the system was ~2 AU, with common envelope evolution
reducing the separation to its current value. The initial and final orbital
separations allow us to constrain the combination of the common envelope
efficiency (alpha) and binding energy parameters (lambda) for the AGB star to
alpha lambda ~3. We examine the various formation scenarios and conclude that
the substellar object was most likely to have been captured by the white dwarf
progenitor early in the life of the cluster, rather than forming in situ.Comment: Accepted for publication in ApJ
- …
