32,871 research outputs found
A comparative study of nonparametric methods for pattern recognition
The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal
Consumer Responses to Recent BSE Events
Recent bovine spongiform encephalopathy (BSE, a.k.a. mad cow disease) discoveries in Canadian and U.S. beef cattle have garnered significant media attention, which may have changed consumers’ meat-purchasing behavior. Consumer response is hypothesized and tested within a meat demand system in which response is measured using single-period dummy variables, longer-term dummy variables, and media indices that count positive and negative meat-industry articles. Parameters are estimated using retail scanner data, and cross-species price elasticities are calculated. Results suggest that the BSE events negatively impacted ground beef and chuck roasts, while positively impacting center-cut pork chop demand. Dummy variables explained the variation in meat-budget shares better than did media indices.Consumer/Household Economics,
J_AW,WA functions in Passarino-Veltman reduction
In this paper we continue to study a special class of Passarino-Veltman
functions J arising at the reduction of infrared divergent box diagrams. We
describe a procedure of separation of two types of singularities, infrared and
mass singularities, which are absorbed in simple C0 functions. The infrared
divergences of C0's can be regularized then by any method: photon mass,
dimensionally or by the width of an unstable particle. Functions J, in turn,
are represented as certain linear combinations of the standard D0 and C0
Passarino-Veltman functions. The former are free of both types of singularities
and are expressed as explicit and compact linear combinations of logarithms and
dilogarithm functions. We present extensive comparisons of numerical results
with those obtained with the aid of the LoopTools package
Recommended from our members
Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold.
Electrochemical CO[Formula: see text] reduction is a potential route to the sustainable production of valuable fuels and chemicals. Here, we perform CO[Formula: see text] reduction experiments on Gold at neutral to acidic pH values to elucidate the long-standing controversy surrounding the rate-limiting step. We find the CO production rate to be invariant with pH on a Standard Hydrogen Electrode scale and conclude that it is limited by the CO[Formula: see text] adsorption step. We present a new multi-scale modeling scheme that integrates ab initio reaction kinetics with mass transport simulations, explicitly considering the charged electric double layer. The model reproduces the experimental CO polarization curve and reveals the rate-limiting step to be *COOH to *CO at low overpotentials, CO[Formula: see text] adsorption at intermediate ones, and CO[Formula: see text] mass transport at high overpotentials. Finally, we show the Tafel slope to arise from the electrostatic interaction between the dipole of *CO[Formula: see text] and the interfacial field. This work highlights the importance of surface charging for electrochemical kinetics and mass transport
Project {\tt SANC} (former {\tt CalcPHEP}): Support of Analytic and Numeric calculations for experiments at Colliders
The project, aimed at the theoretical support of experiments at modern and
future accelerators -- TEVATRON, LHC, electron Linear Colliders (TESLA, NLC,
CLIC) and muon factories, is presented. Within this project a four-level
computer system is being created, which must automatically calculate, at the
one-loop precision level the pseudo- and realistic observables (decay rates and
event distributions) for more and more complicated processes of elementary
particle interaction, using the principle of knowledge storing.
It was already used for a recalculation of the EW radiative corrections for
Atomic Parity Violation [1] and complete one-loop corrections for the process
[2-4]; for the latter an, agreement up to 11 digits with
FeynArts and the other results is found. The version of {\tt SANC} that we
describe here is capable of automatically computing the decay rates and the
distributions for the decays in the one-loop
approximation.Comment: 3 Latex, Presented at ICHEP2002, Amsterdam, July 24-30, 2000;
Submitted to Proceeding
From simplicial Chern-Simons theory to the shadow invariant II
This is the second of a series of papers in which we introduce and study a
rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral
for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected
compact structure groups G. More precisely, we introduce, for general links L
in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson
loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson
(Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then
evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement
with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad
On q-Gaussians and Exchangeability
The q-Gaussians are discussed from the point of view of variance mixtures of
normals and exchangeability. For each q< 3, there is a q-Gaussian distribution
that maximizes the Tsallis entropy under suitable constraints. This paper shows
that q-Gaussian random variables can be represented as variance mixtures of
normals. These variance mixtures of normals are the attractors in central limit
theorems for sequences of exchangeable random variables; thereby, providing a
possible model that has been extensively studied in probability theory. The
formulation provided has the additional advantage of yielding process versions
which are naturally q-Brownian motions. Explicit mixing distributions for
q-Gaussians should facilitate applications to areas such as option pricing. The
model might provide insight into the study of superstatistics.Comment: 14 page
Reachability in Parametric Interval Markov Chains using Constraints
Parametric Interval Markov Chains (pIMCs) are a specification formalism that
extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into
account imprecision in the transition probability values: transitions in pIMCs
are labeled with parametric intervals of probabilities. In this work, we study
the difference between pIMCs and other Markov Chain abstractions models and
investigate the two usual semantics for IMCs: once-and-for-all and
at-every-step. In particular, we prove that both semantics agree on the
maximal/minimal reachability probabilities of a given IMC. We then investigate
solutions to several parameter synthesis problems in the context of pIMCs --
consistency, qualitative reachability and quantitative reachability -- that
rely on constraint encodings. Finally, we propose a prototype implementation of
our constraint encodings with promising results
- …
