49,867 research outputs found
The Role of Variations of Central Density Of White Dwarf Progenitors Upon Type Ia Supernovae
The discovery of the accelerated expansion of the universe using Type Ia
supernovae (SNe Ia) has stimulated a tremendous amount of interest in the use
of SNe Type Ia events as standard cosmological candles, and as a probe of the
fundamental physics of dark energy. Recent observations of SNe Ia have
indicated a significant population difference depending on the host galaxy.
These observational findings are consistent with SNe Ia Ni-56 production in
star-forming spiral galaxies some 0.1 solar masses higher - and therefore more
luminous than in elliptical galaxies. We present recent full-star, 3D
simulations of Type Ia supernovae which may help explain the nature of this
systematic variation in SNe Ia luminosities, as well as the nature of the Ia
explosion mechanism. These insights may in turn eventually shed light on the
mystery of dark energy itself.Comment: 10 Pages, 3 Figures, Submitted to Proceedings of The Ninth
Asia-Pacific International Conference on Gravitation and Astrophysics (ICGA9)
held June 29 to July 3, 2009, at Huazhong University of Science & Technology
in Wuhan, China
Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function
Using Monte Carlo simulations, we have studied isothermal aging of
three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior
of the spin auto-correlation function. Weak violation of the time translational
invariance in the quasi-equilibrium regime is analyzed in terms of {\it
effective stiffness} for droplet excitations in the presence of domain walls.
Within the range of computational time window, we have confirmed that the
effective stiffness follows the expected scaling behavior with respect to the
characteristic length scales associated with droplet excitations and domain
walls, whose growth law has been extracted from our simulated data. Implication
of the results are discussed in relation to experimental works on ac
susceptibilities.Comment: 18 pages, 6 figure
Schools Respond to Risk Management Programs for Asbestos, Lead in Drinking Water and Radon
Based on a study of the three EPA-initiated, public school risk management programs noted in the title, the authors find that state agency involvement is an important factor in the success of such programs. They also find, e.g., that school districts are justifiably reluctant to comply with tentative program
Long period polytype boundaries in silicon carbide
A significant gap in our understanding of polytypism exists, caused partly by the lack of experimental data on the spatial distribution of polytype coalescence and knowledge of the regions between adjoining polytypes. Few observations, Takei & Francombe (1967) apart, of the relative location of different polytypes have been reported. A phenomenological description of the boundaries, exact position of one-dimensional disorder (1DD) and long period polytypes (LPP’s) has been made possible by synchrotron X-ray diffraction topography (XRDT)
The connection between the peaks in velocity dispersion and star-forming clumps of turbulent galaxies
We present Keck/OSIRIS adaptive optics observations with 150-400 pc spatial
sampling of 7 turbulent, clumpy disc galaxies from the DYNAMO sample
(). DYNAMO galaxies have previously been shown to be well matched
in properties to main sequence galaxies at . Integral field
spectroscopy observations using adaptive optics are subject to a number of
systematics including a variable PSF and spatial sampling, which we account for
in our analysis. We present gas velocity dispersion maps corrected for these
effects, and confirm that DYNAMO galaxies do have high gas velocity dispersion
(\kms), even at high spatial sampling. We find statistically
significant structure in 6 out of 7 galaxies. The most common distance between
the peaks in velocity dispersion and emission line peaks is ~kpc, we
note this is very similar to the average size of a clump measured with HST
H maps. This could suggest that the peaks in velocity dispersion in
clumpy galaxies likely arise due to some interaction between the clump and the
surrounding ISM of the galaxy, though our observations cannot distinguish
between outflows, inflows or velocity shear. Observations covering a wider area
of the galaxies will be needed to confirm this result.Comment: Accepted for publication in MNRA
Quantum Collective Creep: a Quasiclassical Langevin Equation Approach
The dynamics of an elastic medium driven through a random medium by a small
applied force is investigated in the low-temperature limit where quantum
fluctuations dominate. The motion proceeds via tunneling of segments of the
manifold through barriers whose size grows with decreasing driving force .
In the limit of small drive, at zero-temperature the average velocity has the
form . For strongly
dissipative dynamics, there is a wide range of forces where the dissipation
dominates and the velocity--force characteristics takes the form
, with the
action for a typical tunneling event, the force dependence being determined by
the roughness exponent of the -dimensional manifold. This result
agrees with the one obtained via simple scaling considerations. Surprisingly,
for asymptotically low forces or for the case when the massive dynamics is
dominant, the resulting quantum creep law is {\it not} of the usual form with a
rate proportional to ; rather we find corresponding to and , with the naive scaling exponent for massive
dynamics. Our analysis is based on the quasi-classical Langevin approximation
with a noise obeying the quantum fluctuation--dissipation theorem. The many
space and time scales involved in the dynamics are treated via a functional
renormalization group analysis related to that used previously to treat the
classical dynamics of such systems. Various potential difficulties with these
approaches to the multi-scale dynamics -- both classical and quantum -- are
raised and questions about the validity of the results are discussed.Comment: RevTeX, 30 pages, 8 figures inserte
Conductance calculations for quantum wires and interfaces: mode matching and Green functions
Landauer's formula relates the conductance of a quantum wire or interface to
transmission probabilities. Total transmission probabilities are frequently
calculated using Green function techniques and an expression first derived by
Caroli. Alternatively, partial transmission probabilities can be calculated
from the scattering wave functions that are obtained by matching the wave
functions in the scattering region to the Bloch modes of ideal bulk leads. An
elegant technique for doing this, formulated originally by Ando, is here
generalized to any Hamiltonian that can be represented in tight-binding form. A
more compact expression for the transmission matrix elements is derived and it
is shown how all the Green function results can be derived from the mode
matching technique. We illustrate this for a simple model which can be studied
analytically, and for an Fe|vacuum|Fe tunnel junction which we study using
first-principles calculations.Comment: 14 pages, 5 figure
Absence of Two-Dimensional Bragg Glasses
The stability to dislocations of the elastic phase, or ``Bragg glass'', of a
randomly pinned elastic medium in two dimensions is studied using the
minimum-cost-flow algorithm for a disordered fully-packed loop model. The
elastic phase is found to be unstable to dislocations due to the quenched
disorder. The energetics of dislocations are discussed within the framework of
renormalization group predictions as well as in terms of a domain wall picture.Comment: 5 pages, REVTEX, 3 figures included. Further information can be
obtained from [email protected]
Effect of interactions on the noise of chiral Luttinger liquid systems
We analyze the current noise, generated at a quantum point contact in
fractional quantum Hall edge state devices, using the chiral Luttinger liquid
model with an impurity and the associated exact field theoretic solution. We
demonstrate that an experimentally relevant regime of parameters exists where
the noise coincides with the partition noise of independent Laughlin
quasiparticles. However, outside of this regime, this independent particle
picture breaks down and the inclusion of interaction effects is essential to
understand the shot noise.Comment: 4 pages, 3 figures; v2: modified FIG.1, new FIG.
- …
