576 research outputs found

    A new approach to hyperbolic inverse problems

    Full text link
    We present a modification of the BC-method in the inverse hyperbolic problems. The main novelty is the study of the restrictions of the solutions to the characteristic surfaces instead of the fixed time hyperplanes. The main result is that the time-dependent Dirichlet-to-Neumann operator prescribed on a part of the boundary uniquely determines the coefficients of the self-adjoint hyperbolic operator up to a diffeomorphism and a gauge transformation. In this paper we prove the crucial local step. The global step of the proof will be presented in the forthcoming paper.Comment: We corrected the proof of the main Lemma 2.1 by assuming that potentials A(x),V(x) are real value

    Influence of melt feeding scheme and casting parameters during direct-chill casting on microstructure of an AA7050 billet

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012Direct-chill (DC) casting billets of an AA7050 alloy produced with different melt feeding schemes and casting speeds were examined in order to reveal the effect of these factors on the evolution of microstructure. Experimental results show that grain size is strongly influenced by the casting speed. In addition, the distribution of grain sizes across the billet diameter is mostly determined by melt feeding scheme. Grains tend to coarsen towards the center of a billet cast with the semi-horizontal melt feeding, while upon vertical melt feeding the minimum grain size was observed in the center of the billet. Computer simulations were preformed to reveal sump profiles and flow patterns during casting under different melt feeding schemes and casting speeds. The results show that solidification front and velocity distribution of the melt in the liquid and slurry zones are very different under different melt feeding scheme. The final grain structure and the grain size distribution in a DC casting billet is a result of a combination of fragmentation effects in the slurry zone and the cooling rate in the solidification range

    Inverse Scattering for Gratings and Wave Guides

    Full text link
    We consider the problem of unique identification of dielectric coefficients for gratings and sound speeds for wave guides from scattering data. We prove that the "propagating modes" given for all frequencies uniquely determine these coefficients. The gratings may contain conductors as well as dielectrics and the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page

    Formation of hot tear under controlled solidification conditions

    Get PDF
    Aluminum alloy 7050 is known for its superior mechanical properties, and thus finds its application in aerospace industry. Vertical direct-chill (DC) casting process is typically employed for producing such an alloy. Despite its advantages, AA7050 is considered as a "hard-to-cast" alloy because of its propensity to cold cracking. This type of cracks occurs catastrophically and is difficult to predict. Previous research suggested that such a crack could be initiated by undeveloped hot tears (microscopic hot tear) formed during the DC casting process if they reach a certain critical size. However, validation of such a hypothesis has not been done yet. Therefore, a method to produce a hot tear with a controlled size is needed as part of the verification studies. In the current study, we demonstrate a method that has a potential to control the size of the created hot tear in a small-scale solidification process. We found that by changing two variables, cooling rate and displacement compensation rate, the size of the hot tear during solidification can be modified in a controlled way. An X-ray microtomography characterization technique is utilized to quantify the created hot tear. We suggest that feeding and strain rate during DC casting are more important compared with the exerted force on the sample for the formation of a hot tear. In addition, we show that there are four different domains of hot-tear development in the explored experimental window-compression, microscopic hot tear, macroscopic hot tear, and failure. The samples produced in the current study will be used for subsequent experiments that simulate cold-cracking conditions to confirm the earlier proposed model.This research was carried out within the Materials innovation institute (www.m2i.nl) research framework, project no. M42.5.09340

    Effect of V and N on the microstructure evolution during continuous casting of steel

    Get PDF
    Low Carbon (LC) steel is not expected to be sensitive to hot tearing and/or cracking while microalloyed steels are known for their high cracking sensitivity during continuous casting. Experience of the Direct Sheet Plant caster at Tata Steel in Ijmuiden (the Netherlands), seems to contradict this statement. It is observed that a LC steel grade has a high risk of cracking alias hot tearing, while a High Strength Low Alloyed (HSLA) steel has a very low cracking occurrence. Another HSLA steel grade, with a similar composition but less N and V is however very sensitive to hot tearing. An extreme crack results in a breakout. A previous statistical analysis of the breakout occurrence reveals a one and a half times higher possibility of a breakout for the HSLA grade compared to the LC grade. HSLA with extra N, V shows a four times smaller possibility of breakout than LC. This study assigns the unexpected effect of the chemical composition on the hot tearing sensitivity to the role of some alloying elements such as V and N as structure refiners.This research was carried out under project number M41.5.08320 within the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl)

    The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy

    Get PDF
    The effect of Ultrasonic Treatment (UT) over selected temperature ranges during cooling and solidification of an Al-2Cu alloy melt on the grain structure and cooling behaviour of the alloy has been investigated using a molybdenum sonotrode introduced without preheating. UT was applied over various temperature ranges before, during and after the nucleation of primary aluminium grains. It was found that ultrasonic grain refinement was achieved only when UT was applied from more than 20 °C above the liquidus temperature until below the liquidus temperature after nucleation has occurred. Applying UT from 40 °C or 60 °C above the liquidus to just above the liquidus brings the melt to a condition that favours nucleation, survival of the nucleated grains and their subsequent transport throughout the melt. Continuing to apply UT beyond the liquidus for a short time enhances both nucleation and convection thereby ensuring the formation of a fine, uniform equiaxed grain size throughout the casting. The lack of grain refinement when UT was applied from 20 °C above the liquidus temperature or from temperatures below the liquidus temperature is attributed to the formation of a strong solidified layer on the sonotrode which hinders the effective transmission of ultrasonic irradiation into the liquid metal. The application of a preheated sonotrode showed that formation of a solid layer can be prevented by preheating the sonotrode to 285 °C. Thus, an appropriate amount of superheat of the liquid metal or sufficient preheating of the sonotrode is necessary for ultrasonic grain refinement when a sonotrode is introduced into the melt

    Modeling of primary dendrite arm spacing variations in thin-slab casting of low carbon and low alloy steels

    Get PDF
    Solidification structure of a High Strength Low Alloy (HSLA) steel, in terms of dendrite arm spacing distribution across the shell thickness, is studied in a breakout shell from a thin-slab caster at Tata Steel in IJmuiden. Columnar dendrites were found to be the predominant morphology throughout the shell with size variations across the shell thickness. Primary Dendrite Arm Spacing (PDAS) increases by increasing the distance from meniscus or slab surface. Subsequently, a model is proposed to describe the variation of the PDAS with the shell thickness (the distance from slab surface) under solidifiction conditions experienced in the primary cooling zone of thin-slab casting. The proposed relationship related the PDAS to the shell thickness and, hence, can be used as a tool for predicting solidifcation structure and optimizing the thin-slab casting of low alloy steels

    A new Al-Zr-Ti master alloy for ultrasonic grain refinement of wrought and foundry aluminum alloys

    Get PDF
    A new grain refiner master alloy based on the Al-Zr-Ti system was prepared by salt assisted synthesis. 90% of Al3Zr particles in the master alloy were ranged between 1 and 13 μm. 80% reduction of grain size was observed with the addition of 0.2wt% Zr equivalent master alloy combined with ultrasonic treatment in an Al alloy. The new master alloy demonstrated 30% improvement in grain refinement efficiency compared to the one prepared by a conventional alloy route.The authors wish to acknowledge financial support from the ExoMet Project, which is co-funded by the European Commission in the 7th Framework Programme (contract FP7-NMP3-LA-2012-280421), by the European Space Agency and by the individual partner organisations
    corecore