18,058 research outputs found

    Quantum Google in a Complex Network

    Get PDF
    We investigate the behavior of the recently proposed quantum Google algorithm, or quantum PageRank, in large complex networks. Applying the quantum algorithm to a part of the real World Wide Web, we find that the algorithm is able to univocally reveal the underlying scale-free topology of the network and to clearly identify and order the most relevant nodes (hubs) of the graph according to their importance in the network structure. Moreover, our results show that the quantum PageRank algorithm generically leads to changes in the hierarchy of nodes. In addition, as compared to its classical counterpart, the quantum algorithm is capable to clearly highlight the structure of secondary hubs of the network, and to partially resolve the degeneracy in importance of the low lying part of the list of rankings, which represents a typical shortcoming of the classical PageRank algorithm. Complementary to this study, our analysis shows that the algorithm is able to clearly distinguish scale-free networks from other widespread and important classes of complex networks, such as Erd\H{o}s-R\'enyi networks and hierarchical graphs. We show that the ranking capabilities of the quantum PageRank algorithm are related to an increased stability with respect to a variation of the damping parameter α\alpha that appears in the Google algorithm, and to a more clearly pronounced power-law behavior in the distribution of importance among the nodes, as compared to the classical algorithm. Finally, we study to which extent the increased sensitivity of the quantum algorithm persists under coordinated attacks of the most important nodes in scale-free and Erd\H{o}s-R\'enyi random graphs

    Sequential Quantum Cloning

    Get PDF
    Not all unitary operations upon a set of qubits can be implemented by sequential interactions between each qubit and an ancillary system. We analyze the specific case of sequential quantum cloning 1->M and prove that the minimal dimension D of the ancilla grows linearly with the number of clones M. In particular, we obtain D = 2M for symmetric universal quantum cloning and D = M+1 for symmetric phase-covariant cloning. Furthermore, we provide a recipe for the required ancilla-qubit interactions in each step of the sequential procedure for both cases.Comment: 4 pages, no figures. New version with changes. Accepted in Physical Review Letter

    Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization

    Get PDF
    We determine the existence of critical lines in dimerized quantum spin ladders in their phase diagram of coupling constants using the finite-size DMRG algorithm. We consider both staggered and columnar dimerization patterns, and antiferromagnetic and ferromagnetic inter-leg couplings. The existence of critical phases depends on the precise combination of these patterns. The nature of the massive phases separating the critical lines are characterized with generalized string order parameters that determine their valence bond solid (VBS) content.Comment: 9 pages 10 figure

    Universality Classes of Diagonal Quantum Spin Ladders

    Full text link
    We find the classification of diagonal spin ladders depending on a characteristic integer NpN_p in terms of ferrimagnetic, gapped and critical phases. We use the finite algorithm DMRG, non-linear sigma model and bosonization techniques to prove our results. We find stoichiometric contents in cuprate CuO2CuO_2 planes that allow for the existence of weakly interacting diagonal ladders.Comment: REVTEX4 file, 3 color figures, 1 tabl

    Ambiguities of arrival-time distributions in quantum theory

    Full text link
    We consider the definition that might be given to the time at which a particle arrives at a given place, both in standard quantum theory and also in Bohmian mechanics. We discuss an ambiguity that arises in the standard theory in three, but not in one, spatial dimension.Comment: LaTex, 12 pages, no figure
    • …
    corecore