8,120 research outputs found
Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow
Experiments on spherical particles in a 3D Couette cell vibrated from below
and sheared from above show a hysteretic freezing/melting transition. Under
sufficient vibration a crystallized state is observed, which can be melted by
sufficient shear. The critical line for this transition coincides with equal
kinetic energies for vibration and shear. The force distribution is
double-peaked in the crystalline state and single-peaked with an approximately
exponential tail in the disordered state. A linear relation between pressure
and volume () exists for a continuum of partially and/or
intermittently melted states over a range of parameters
Thin shell wormhole due to dyadosphere of a charged black hole
To explain Gamma Ray Bursts, Ruffini argued that the event horizon of a
charged black hole is surrounded by a special region called, the Dyadosphere
where electric field exceeds the critical value for pair
production. In the present work, we construct a thin shell wormhole by
performing a thought surgery between two dadospheres. Several physical
properties of this thin shell wormhole have been analyzed.Comment: 10 pages, 2 figures. Accepted in Mod.Phys.Lett.
Islands of conformational stability for Filopodia
Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work
Instabilities in droplets spreading on gels
We report a novel surface-tension driven instability observed for droplets
spreading on a compliant substrate. When a droplet is released on the surface
of an agar gel, it forms arms/cracks when the ratio of surface tension gradient
to gel strength is sufficiently large. We explore a range of gel strengths and
droplet surface tensions and find that the onset of the instability and the
number of arms depend on the ratio of surface tension to gel strength. However,
the arm length grows with an apparently universal law L ~ t^{3/4}
Burst avalanches in solvable models of fibrous materials
We review limiting models for fracture in bundles of fibers, with
statistically distributed thresholds for breakdown of individual fibers. During
the breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, and the distribution of the magnitude of
such avalanches is the central characteristics in our analysis. For a bundle of
parallel fibers two limiting models of load sharing are studied and contrasted:
the global model in which the load carried by a bursting fiber is equally
distributed among the surviving members, and the local model in which the
nearest surviving neighbors take up the load. For the global model we
investigate in particular the conditions on the threshold distribution which
would lead to anomalous behavior, i.e. deviations from the asymptotics
, known to be the generic behavior. For the local
model no universal power-law asymptotics exists, but we show for a particular
threshold distribution how the avalanche distribution can nevertheless be
explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure
Photoelastic force measurements in granular materials
Photoelastic techniques are used to make both qualitative and quantitative
measurements of the forces within idealized granular materials. The method is
based on placing a birefringent granular material between a pair of polarizing
filters, so that each region of the material rotates the polarization of light
according to the amount of local of stress. In this review paper, we summarize
past work using the technique, describe the optics underlying the technique,
and illustrate how it can be used to quantitatively determine the vector
contact forces between particles in a 2D granular system. We provide a
description of software resources available to perform this task, as well as
key techniques and resources for building an experimental apparatus
Statistical properties of stock order books: empirical results and models
We investigate several statistical properties of the order book of three
liquid stocks of the Paris Bourse. The results are to a large degree
independent of the stock studied. The most interesting features concern (i) the
statistics of incoming limit order prices, which follows a power-law around the
current price with a diverging mean; and (ii) the humped shape of the average
order book, which can be quantitatively reproduced using a `zero intelligence'
numerical model, and qualitatively predicted using a simple approximation.Comment: Revised version, 10 pages, 4 .eps figures. to appear in Quantitative
Financ
Scaling in the time-dependent failure of a fiber bundle with local load sharing
We study the scaling behaviors of a time-dependent fiber-bundle model with
local load sharing. Upon approaching the complete failure of the bundle, the
breaking rate of fibers diverges according to ,
where is the lifetime of the bundle, and is a quite
universal scaling exponent. The average lifetime of the bundle scales
with the system size as , where depends on the
distribution of individual fiber as well as the breakdown rule.Comment: 5 pages, 4 eps figures; to appear in Phys. Rev.
Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-temperature superconductors
We show that low-angle grain boundaries (GB) in high-temperature
superconductors exhibit intermediate Abrikosov vortices with Josephson cores,
whose length along GB is smaller that the London penetration depth, but
larger than the coherence length. We found an exact solution for a periodic
vortex structure moving along GB in a magnetic field and calculated the
flux flow resistivity , and the nonlinear voltage-current
characteristics. The predicted dependence describes well our
experimental data on unirradiated and irradiated
bicrystals, from which the core size , and the intrinsic depairing
density on nanoscales of few GB dislocations were measured for the
first time. The observed temperature dependence of
indicates a significant order parameter suppression in current channels between
GB dislocation cores.Comment: 5 pages 5 figures. Phys. Rev. Lett. (accepted
- …